Math, asked by arushii09, 2 months ago

Prove that:
 \frac{sin \: x \:  -  \: cos \: x \:  + 1}{sin \: x \:  + cos \: x \:  - 1  } =  \frac{1}{sec \: x \:  -  \: tan \: x}

Attachments:

Answers

Answered by SeCrEtID2006
17

\huge\tt\underline\orange {refer - attachment}

\huge\tt\underline\purple {thanks}

\huge\tt\underline\pink {hope-its-helpful}

Attachments:
Answered by Flaunt
18

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{sinx - cosx + 1}{sinx + cosx - 1}  =  \dfrac{1}{secx - tanx}

Taking left side

Rearranging the values:

\sf \longmapsto \dfrac{sinx + 1 - cosx}{sinx - 1 + cosx}

\sf \longmapsto \dfrac{sinx +(1 - cosx) }{sinx -(1 - cosx) }

Now, Rationalising the trigonometric values:

\sf \longmapsto \dfrac{sinx +(1 - cosx)(sinx + (1 - cosx)}{sinx - (1 -cosx) (sinx + (1 - cosx)}

\sf \longmapsto \dfrac{ {sin}^{2}x + (1 +   {cos}^{2}x - 2cosx ) + 2sinx(1 - cosx)}{ {sin}^{2} x - (1 +  {cos}^{2}x -  - 2cosx) }

\sf \longmapsto \dfrac{ {sin}^{2} x + 1 +  {cos}^{2}x  -  2cosx + 2sinx  - 2cosxsinx  }{ {sin}^{2}x - 1 -  {cos}^{2} x + 2cosx }

\sf \longmapsto \dfrac{1 + 1  - 2cosx + 2sinx - 2sinxcosx}{ -  {cos}^{2}x -  {cos}^{2}x + 2cosx }

\sf \longmapsto \dfrac{2 - 2cosx + 2sinx - 2sinxcosx}{ - 2 {cos}^{2}  x + 2cosx}

\sf \longmapsto \dfrac{2(1 - cosx) + 2sinx(1 - cosx)}{2cosx(1 - cosx)}

\sf \longmapsto \dfrac{(2 + 2sinx)(1 - cosx)}{2cosx(1 - cosx)}

\sf \longmapsto \dfrac{2 + 2sinx}{2cosx}

\sf \longmapsto \dfrac{1 + sinx}{cosx}

\sf \longmapsto \: secx + tanx

Reciprocal the term:

\sf \longmapsto \dfrac{secx + tanx}{1}

\sf \longmapsto \dfrac{secx + tanx}{ {sec}^{2}x -  {tan}^{2} x }

identity used :(a+b)(a-b)=a²-b²

\sf \longmapsto \dfrac{secx + tanx}{(secx + tanx)(secx - tanx)}

\sf  = { \bold{ \dfrac{1}{secx - tanx} }}

Extra shot =>

trigonometric formulas:

  • Sin²θ+cos²θ=1
  • sec²θ-tan²θ=1
  • cosec²θ-cot²θ=1

Reciprocal Identities:

  • Sinθ=1/cosecθ
  • cosθ=1/secθ
  • Tanθ=1/cotθ

Similar questions