Math, asked by malayalikutti, 1 month ago

Prove that

 \frac{tan(θ) }{1 -  \ \cot(θ) ) }  +  \frac{ \ \cot(θ) ) }{1 -  \tan(θ) } \\  \\   = 1 +  \sec(θ)cosecθ

Answers

Answered by AestheticSky
151

FORMULA USED:-

\underline{\boxed{\sf a³-b³ = (a-b)(a²+ab+b²)}}

L.H.S :-

  \sf \green{ \dfrac{ \tan( \theta) }{1 -  \cot(\theta )  } +  \dfrac{ \cot(\theta) }{1 -  \tan(\theta) }  }

   \bigstar{ \pmb {\red{{ \sf   Required \: solution }}}}

 \implies \sf \pink{ \dfrac{ \tan(\theta) }{1 -  \dfrac{1}{ \tan(\theta) } }  +   \dfrac{\dfrac{1}{ \tan(\theta) }}{1 -  \tan( \theta) }  }

  \implies\sf \purple{ \dfrac{ \tan(\theta) }{ \dfrac{ \tan(\theta) - 1 }{ \tan(\theta) } }  +  \dfrac{ \dfrac{1}{ \tan(\theta) } }{1 -  \tan(\theta) } }

\implies \sf \pink{ \dfrac{ \tan ^{2}\theta }{ \tan\theta - 1} +  \dfrac{1}{ \tan\theta ( \tan\theta - 1)}}

  \implies\sf \purple{ \dfrac{ \tan ^{2} \theta }{ \tan\theta - 1 }  -  \dfrac{1}{ \tan\theta( \tan\theta - 1 )}}

  \implies\sf \pink{ \dfrac{ \tan ^{3} \theta - 1 }{ \tan\theta( \tan\theta - 1 ) } }

 \implies \sf \purple{ \dfrac{  \cancel{(\tan\theta - 1}) ( { \tan}^{2}\theta + 1 +  \tan\theta  )}{ \tan\theta( \cancel{ \tan\theta - 1 )}} }

  \implies\sf \pink{ \dfrac{ \tan ^{2} \theta + 1 +  \tan\theta}{ \tan\theta} }

 \implies \sf \purple{ \tan\theta +  \cot\theta + 1 }

Now, Convert this value in terms of sin and cos

 \implies \sf \orange{ \dfrac{ \sin\theta }{ \cos\theta}  +  \dfrac{ \cos\theta}{ \sin\theta }  + 1}

  \implies\sf \blue{ \dfrac{ \sin ^{2} \theta +  \cos ^{2} \theta }{ \sin\theta \cos\theta } + 1 }

 \implies \sf \orange{ \dfrac{1}{ \sin\theta \cos\theta }  + 1}

 \implies \sf \blue{ \sec\theta \csc\theta + 1  }

Not appreciated for de answer :(


BrainIyMSDhoni: Amazing :)
Answered by Anonymous
0

Answer:

ninte ans arum report cheyyathe dlt ayath kando...

alle ingane kanikkum.

Attachments:
Similar questions