Math, asked by ishita4337, 1 year ago

prove that :-
 \frac{ {tan}^{2} \alpha  }{sec \alpha  + 1}  =  \frac{ {1 - cos \alpha } }{cos \alpha }

Answers

Answered by pratik40
2

Step-by-step explanation:

rhs \:  \:  =  \frac{ {tan}^{2}  \alpha }{ \sec\alpha  + 1 }

we know that ,

 {tan}^{2}  \alpha  =  {sec}^{2}  \alpha  - 1

 =(  { \sec\alpha })^{2}  -  ({1})^{2}

 = ( \sec\alpha   - 1)(sec \alpha  + 1)

So ,

Substitute this for tan^2alpha

rhs \:  \:  =  \:  \:  \frac{(sec \alpha  + 1)(sec \alpha  - 1)}{(sec \alpha  + 1)}

 = sec \alpha  - 1

 =  \frac{1}{cos \alpha }  - 1

  = \frac{1 - cos \alpha }{cos \alpha }  = rhs

Hence proved ! !

Answered by Anonymous
0

SOLUTION ☺️

 =  >  \frac{ \tan {}^{2} \alpha  }{ \sec \alpha  + 1}  =  \frac{1 - cos \alpha }{ \cos \alpha  }  \\  \\  =  > tan {}^{2}  \alpha  = sec {}^{2}  \alpha  + 1 \\  =  > (sec \ \alpha ) {}^{2}   + (1) {}^{2}  \\  =  > (sec \:  \alpha   + 1)  \: ( \sec \alpha   - 1) \\  =  > substitute \:  the \: place \: of \: tan \:  {}^{2}  \alpha  \\  =  >  \frac{(sec  \alpha + 1)(sec \alpha  - 1)}{( \sec \alpha   + 1) }  \\  \\  =  >  \sec \alpha  - 1 \\  =  >  1 -  \frac{1}{cos \alpha }   \\ \\  =  >  \frac{1 - cos \alpha }{ \cos \alpha  }

hope it helps ✔️

Similar questions