Math, asked by sukhwindersinghsembh, 4 months ago

Prove that
 \frac{ \tan^{2}e}{1 +  \tan^{2}e  }  +  \frac{ {  \cot }^{2}e }{1 +  { \cot }^{2} e}  = 1

Answers

Answered by vipashyana1
1

\mathfrak{\huge{Answer:-}} \\  \frac{ {tan}^{2} θ}{1 +  {tan}^{2} θ}  +  \frac{ {cot}^{2} θ}{1 +  {cot}^{2}θ }  = 1 \\  \frac{ \frac{ {sin}^{2}θ }{ {cos}^{2}θ } }{1 +  \frac{ {sin}^{2}θ }{ {cos}^{2}θ } }  +  \frac{ \frac{ {cos}^{2} θ}{ {sin}^{2}θ } }{ 1 + \frac{{cos}^{2}θ }{ {sin}^{2}θ } }  = 1 \\  \frac{ \frac{ {sin}^{2} θ}{ {cos}^{2}θ } }{ \frac{ {cos}^{2} θ +  {sin}^{2} θ}{ {cos}^{2}θ } }  +  \frac{ \frac{ {cos}^{2}θ }{ {sin}^{2} θ} }{ \frac{ {sin}^{2} θ +  {cos}^{2}θ }{ {sin}^{2}θ } }  = 1 \\  \frac{ \frac{ {sin}^{2} θ}{ {cos}^{2} θ} }{ \frac{1}{ {cos}^{2}θ } }  +  \frac{ \frac{ {cos}^{2} θ}{ {sin}^{2}θ } }{ \frac{1}{ {sin}^{2}θ } }  = 1 \\  \frac{ {sin}^{2}θ }{ {cos}^{2}θ }  \times  {cos}^{2} θ +  \frac{ {cos}^{2} θ}{ {sin}^{2} θ}  \times  {sin}^{2} θ = 1 \\  {sin}^{2} θ +  {cos}^{2} θ = 1 \\ 1 = 1\\LHS=RHS\\Hence\:proved

Answered by TMarvel
0

Answer:

PROVED

Step-by-step explanation:

 \frac{ { \tan }^{2} e}{1 +  { \tan }^{2}e }  +  \frac{ { \cot}^{2} e}{1 +  { \cot}^{2}e }  \\  =  \frac{ { \tan}^{2}e }{  { \sec}^{2} e}  +  \frac{ { \cot}^{2}e }{  { \csc }^{2} e }  \\  =  \frac{ { \sin }^{2} e}{ { \cos }^{2} e}  \times  { { \cos}^{2} e} +  \frac{ { \cos }^{2}e }{ { \sin}^{2}e }  \times  { \sin }^{2} e \\  =  { \sin }^{2} e +  { \cos }^{2} e \\  = 1

IDENTITY USED:

tan²x + 1 = sec²x

cot²x+ 1 = csc²x

sin²x + cos²x = 1

HOPE IT HELPS :D

Similar questions