Prove that
Answers
Answered by
1
write LHS in terms of sine and cos.
LHS
= sin² / [cos (sin+cos)] + cos² / [sine (cos - sine)]
= [ Sin³ (cos - sine) + Cos³ (sin + cos) ] / [sine cos (cos² - sin²)]
= [ Sin cos (cos²+sin²) - (cos² - sin²)(cos²+sin²) ] / [sine cos (cos2 ) ]
= [ sin cos - cos2 ] / [sine cos cos2]
= Sec2θ - 2 cosec2θ
this is the answer for LHS.
==========================
the two expressions on the right side are equal.
1+ tan + cot = 1 + (sin²+ cos²)/(sin cos ) = 1 + cosec sec.
LHS
= sin² / [cos (sin+cos)] + cos² / [sine (cos - sine)]
= [ Sin³ (cos - sine) + Cos³ (sin + cos) ] / [sine cos (cos² - sin²)]
= [ Sin cos (cos²+sin²) - (cos² - sin²)(cos²+sin²) ] / [sine cos (cos2 ) ]
= [ sin cos - cos2 ] / [sine cos cos2]
= Sec2θ - 2 cosec2θ
this is the answer for LHS.
==========================
the two expressions on the right side are equal.
1+ tan + cot = 1 + (sin²+ cos²)/(sin cos ) = 1 + cosec sec.
Similar questions