Math, asked by Anonymous, 9 months ago

Prove that:-

 \frac{tan \theta}{ 1-cot \theta} + \frac{ cot \theta}{ 1-tan \theta} =1 + sec \theta \: cosec \theta

Class:- 10
Chapter:- Introduction to Trigonometry​

Answers

Answered by Anonymous
3

Solution :

LHS = \frac{tan \theta}{ 1-cot \theta} + \frac{ cot \theta}{ 1-tan \theta}  \\  \\  \:  =  \frac{tan \theta}{ 1-  \frac{1}{tan \theta}} + \frac{  \frac{1}{ \tan \theta}}{ 1-tan \theta}

 =  \frac{{ \tan}^{2}  \theta}{tan \theta \:  - 1}   +  \:  \frac{1}{ \tan \theta \:  (1 \:  -  \: tan \theta)}  \\  \\ \:  =  \frac{{ \tan}^{2}  \theta}{tan \theta \:  - 1}    -  \:  \:  \frac{1}{ \tan \theta \:  ( tan \theta \:  -  \: 1)}

  = \frac{ {tan}^{3}  \theta \:  - 1}{tan \theta(tan \theta - 1)}  \\  \\  =    \frac{(tan \theta \:  - 1)( {tan}^{2} \theta \ +  \: tan \theta) }{tan \theta \: (tan \theta - 1)}

 {a}^{3}  \:  -  \:  {b}^{3}  =  \: (a \:  -  \: b \: ) {a}^{2}  + \:  ab \:  +  {b}^{2}

  =  \frac{{tan}^{2}  \theta  \: + \: 1 \:  +  \: tan \theta}{tan \theta} \:  \\  \\  = tan \theta \:  +  \: cot \theta \:  +  \: 1

 =  \frac{sin \theta}{cos \theta}  +   \frac{cos \theta}{sin \theta}  +  \: 1 \\  \\   = \frac{  {sin}^{2} \theta \:  +  \:  {cos}^{2}  \theta }{sin \theta \: cos \theta}  +  \: 1 \\  \\  =  \frac{1}{sin \theta \: cos \theta}  +  \: 1 \\  \\     \: {sin}^{2}  \theta \:  +   {cos}^{2}  \theta \:  =  \: 1 \\  \\  =  \: cosec \theta \: sec \theta \:  + \:  1 \\  \\  = 1 \:  +  \: sec \theta  \: cosec \theta \\  \\  = RHS \:  \:  \: Hence \: proved

Answered by Anonymous
111

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{Prove\:\:\dfrac{tan\theta }{1-cot\theta }+\dfrac{\cot \theta }{1-tan\theta }=1+sec\theta \:cosec\theta}

♣ ᴀɴꜱᴡᴇʀ :

\sf{Manipulating\:left\:side}

\sf{\dfrac{\tan \left(\theta\right)}{1-\cot \left(\theta\right)}+\dfrac{\cot \left(\theta\right)}{1-\tan \left(\theta\right)}}

Express with sin,cos

\sf{\dfrac{\cot \left(\theta\right)}{1-\tan \left(\theta\right)}+\dfrac{\tan \left(\theta\right)}{1-\cot \left(\theta\right)}}

Using the Basic Trigonometric identity: cot(x)= cos(x)/sin(x)

\sf{\cot \left(\theta\right)=\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}

\dfrac{\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}{1-\tan \left(\theta\right)}+\dfrac{\tan \left(\theta\right)}{1-\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}

Using the Basic Trigonometric identity: tan(x)= sin(x)/cos(x)

\tan \left(\theta\right)=\dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}

=\dfrac{\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}{1-\dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}}+\dfrac{\dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}}{1-\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}

\bf{\bigstar \:\:Simplify\:\::\dfrac{\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}{1-\dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}}+\dfrac{\dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}}{1-\dfrac{\cos \left(\theta\right)}{\sin \left(\theta\right)}}}

=\dfrac{\sin ^2\left(\theta\right)+\cos ^2\left(\theta\right)+\sin \left(\theta\right)\cos \left(\theta\right)}{\cos \left(\theta\right)\sin \left(\theta\right)}

=\dfrac{\cos ^2\left(\theta\right)+\sin ^2\left(\theta\right)+\cos \left(\theta\right)\sin \left(\theta\right)}{\cos \left(\theta\right)\sin \left(\theta\right)}

\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1

=\dfrac{1+\cos \left(\theta\right)\sin \left(\theta\right)}{\cos \left(\theta\right)\sin \left(\theta\right)}

\mathrm{Manipulating\:right\:side}

1+\sec \left(\theta\right)\csc \left(\theta\right)

Express with sin,cos

=1+\dfrac{1}{\cos \left(\theta\right)}\cdot \dfrac{1}{\sin \left(\theta\right)}

\bf{\bigstar \:\:Simplify\:\::1+\dfrac{1}{\cos \left(\theta\right)}\cdot \dfrac{1}{\sin \left(\theta\right)}

=\dfrac{\cos \left(\theta\right)\sin \left(\theta\right)+1}{\cos \left(\theta\right)\sin \left(\theta\right)}

=\dfrac{1+\cos \left(\theta\right)\sin \left(\theta\right)}{\cos \left(\theta\right)\sin \left(\theta\right)}

\mathrm{We\:showed\:that\:the\:two\:sides\:could\:take\:the\:same\:form}

\Rightarrow \mathrm{True}

\boxed{\bf{\dfrac{tan\theta }{1-cot\theta }+\dfrac{\cot \theta }{1-tan\theta }=1+sec\theta \:cosec\theta}}

Hence Proved !!!

Similar questions