Math, asked by ajay789874, 1 year ago

Prove that:
 \frac{ \tan(theta) }{1 - cot \: theta} +  \frac{cot \: theta}{1 - tan \: theta}  = 1 + sec \: theta \times cosec \: theta
20 points​

Answers

Answered by protestant
0
if u have any doubt ask to me
Attachments:
Answered by itzsecretgiggle18
1

Answer:-

\red{\bigstar} Value is \large\underline{\boxed{\tt\purple{2}}}

• Given:-

\sf(1 + tan \theta \: + sec \theta)(1 + cot \theta \: - cosec \theta)

★ Basic Knowledge:-

\sf\pink{tan \theta = \dfrac{sin \theta}{cos \theta}}

\sf\pink{cot \theta = \dfrac{cos \theta}{sin \theta}}

\sf\pink{sec \theta = \dfrac{1}{cos \theta}}

\sf\pink{cosec \theta = \dfrac{1}{sin \theta}}

\sf\pink{sin^2 \theta + cos^2 \theta = 1}

• Solution:-

\sf(1 + tan \theta \: + sec \theta)(1 + cot \theta \: - cosec \theta)

\sf \bigg(1 + \dfrac{sin \theta}{cos \theta}+ \dfrac{1}{cos \theta} \bigg) \bigg(1+ \dfrac{cos \theta}{sin \theta} - \dfrac{1}{sin \theta} \bigg) \\

\sf \bigg(\dfrac{cos \theta + sin \theta + 1 }{cos \theta} \bigg) \bigg(\dfrac{sin \theta+ cos \theta - 1}{sin \theta} \bigg) \\

\sf \bigg(\dfrac{(sin \theta + cos \theta - 1)(cos \theta + sin \theta + 1)}{cos \theta . sin \theta} \bigg) \\

\sf \bigg(\dfrac{(sin \theta + cos \theta - 1~</p><p>➪ [tex]\sf \bigg(\dfrac{(sin \theta + cos \theta)^2 - 1^2}{sin \theta . cos \theta} \bigg) \\

\sf \bigg(\dfrac{sin^2 \theta + cos^2 \theta+ 2 sin cos \theta - 1}{sin \theta . cos \theta} \bigg) \\

\sf \bigg(\dfrac{1 + 2 sin cos \theta - 1}{sin \theta . cos \theta} \bigg) \\

\sf \bigg(\dfrac{2 sin \theta. cos \theta}{sin \theta . cos \theta} \bigg) \\

\large{\bf\green{2}} \\

Therefore, the value of \sf(1 + tan \theta \: + sec \theta)(1 + cot \theta \: - cosec \theta)

is 2.

Similar questions