Prove that:
==1+tana+cota
Answers
Answered by
3
hello dear,
(tan A)/(1 - cot A) + cot A /(1 - tan A)
= (tan A)/[(1 - (1/tan A)] + cot A /(1 - tan A)
= (tan2 A)/[(tan A - 1)] + cot A /(1 - tan A)
= (tan2 A)/[(tan A - 1)] - cot A /(tan A - 1)
= (tan2 A - cot A) / (tan A - 1)
= (tan2 A - 1/tan A) / (tan A - 1)
= (tan3 A - 1) / [tan A (tan A - 1)]
= (tan A - 1)(tan2 A + tan A + 1) / [tan A (tan A - 1)]
= (tan2 A + tan A + 1) / tan A
= 1 + tan A + cot A
I HOPE ITS HELP YOU DEAR, :-)
(tan A)/(1 - cot A) + cot A /(1 - tan A)
= (tan A)/[(1 - (1/tan A)] + cot A /(1 - tan A)
= (tan2 A)/[(tan A - 1)] + cot A /(1 - tan A)
= (tan2 A)/[(tan A - 1)] - cot A /(tan A - 1)
= (tan2 A - cot A) / (tan A - 1)
= (tan2 A - 1/tan A) / (tan A - 1)
= (tan3 A - 1) / [tan A (tan A - 1)]
= (tan A - 1)(tan2 A + tan A + 1) / [tan A (tan A - 1)]
= (tan2 A + tan A + 1) / tan A
= 1 + tan A + cot A
I HOPE ITS HELP YOU DEAR, :-)
Similar questions