Math, asked by Pranitha2080, 1 year ago

Prove that  \frac{tanh\ x}{sech\ x\ -\ 1} + \frac{tanh\ x}{sech\ x\ +\ 1} = 2 cosech\ x, \ for \ x\ \neq\ 0 .

Answers

Answered by waqarsd
9

given \\  \\  \frac{tanh(x)}{sech(x) - 1}   +  \frac{tanh(x)}{sech(x) + 1}  \\  =  \frac{tanhx}{sechx - 1}  \times  \frac{sechx + 1}{sechx + 1}  +  \frac{tanhx}{sechx  + 1}  \times  \frac{sechx - 1}{sechx - 1}  \\  =  \frac{tanhx}{ {sech}^{2}x - 1 } (sechx + 1) +  \frac{tanhx}{ {sech}^{2}x - 1 } (sechx - 1) \\  < since \:  {sech}^{2} x - 1 =  {tanh}^{2} x >  \\   = \frac{sechx + 1}{tanhx}  +  \frac{sechx - 1}{tanhx}  \\  =  \frac{2sechx}{tanhx}  \\  =  \frac{2sechx}{sinhx} coshx \\  = 2cosechx
hope it helps
Similar questions