Prove That:-
Answers
Answer:hence proved✌✌
Step-by-step explanation:
=[Tex]\int{\frac{dx}{1-2acosx+a{}^{2}}[/tex]
Put cosx =
=[Tex]\int{\frac{(1+tan{}^{2} x/2)dx}{(1+a{}^{2} )(1+tan{}^{2} x/2)-2a(1-tan{}^{2} x/2)}}[/tex]
=[Tex]\int{\frac{(sec{}^{2} x/2)dx}{(1+a{}^{2} )(1+tan{}^{2} x/2)-2a(1-tan{}^{2} x/2)}}[/tex]
{Tan x/2 = t
Sec^2 x/2 dx = dt}
=2
=2
=[Tex]\int{\frac{dt}{[(a-1)/(a+1)]{}^{2} +t{}^{2}}[/tex]
=
=- + c
= + c
Hence proved
Hope it helps u
#skb✌
Answer:
=[Tex]\int{\frac{dx}{1-2acosx+a{}^{2}}[/tex]
Put cosx =
=[Tex]\int{\frac{(1+tan{}^{2} x/2)dx}{(1+a{}^{2} )(1+tan{}^{2} x/2)-2a(1-tan{}^{2} x/2)}}[/tex]
=[Tex]\int{\frac{(sec{}^{2} x/2)dx}{(1+a{}^{2} )(1+tan{}^{2} x/2)-2a(1-tan{}^{2} x/2)}}[/tex]
{Tan x/2 = t
Sec^2 x/2 dx = dt}
=2\int{\frac{dt}{(1+a{}^{2})(1+t{}^{2})-2a(1-t{}^{2})}
=2\int{\frac{dt}{(a-1){}^{2} + t{}^{2}(a+1){}^{2}}
=\frac{2}{(1+a){}^{2})}
(1+a)
2
)
2
[Tex]\int{\frac{dt}{[(a-1)/(a+1)]{}^{2} +t{}^{2}}[/tex]
=\frac{2}{(1+a)^2} \frac{ tan{}^{-1} t}{(a-1)/(a+1)}
(1+a)
2
2
(a−1)/(a+1)
tan
−1
t
=-\frac{2}{(a-1)}
(a−1)
2
tan{}^{-1} x/2 [(1+a)/(1-a)]tan
−1
x/2[(1+a)/(1−a)] + c
=\frac{2}{1-a}
1−a
2
tan{}^{-1}(1+a)/(1-a) x/2tan
−1
(1+a)/(1−a)x/2 + c
proved...