Physics, asked by Anonymous, 6 months ago

Prove that

\large\rm { \sum \tau = I \alpha}

Answers

Answered by Anonymous
39

we know that

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum F = ma}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum r \times F = mr \times a}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum r \times F = mr \times ( \alpha \times r)}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum r \times F = m \alpha ( r \cdot r) - r ( r \cdot \alpha)}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum r \times F = m \alpha r^{2} - 0}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \sum r \times F = mr^{2} \alpha}

\large\rm { \: }

\large\rm { \:\:\:\:\:\:\:\:\:\:\: \boxed{\therefore \sum \tau = I \ \alpha}}

Similar questions