Math, asked by sajan6491, 1 day ago

Prove that
 \large \tt \red{{e}^{i \theta}  =  \cos \theta + i \sin \theta}

Answers

Answered by suchismitadash7542
1

Answer:

we \: know \: that \:  {e}^{x}  = 1 +  \frac{x}{1!}  +   \frac{ {x}^{2} }{2!}  +  \frac{ {x}^{3} }{3!}  + ... \\ similarly \:  {e}^{ix}  = 1 +  \frac{ix}{1!}  +   \frac{ {ix}^{2} }{2!}  +  \frac{ {ix}^{3} }{3!}  + ... \\  = 1 +  \frac{ix}{1!} +  \frac{ {i}^{2} {x}^{2}  }{2!}  +  \frac{ {i}^{3} {x}^{3}  }{3!}  + ...  \\ = 1 +  \frac{ix}{1!}  -  \frac{ {x}^{2} }{2!}   -   \frac{ i{x}^{3} }{3!}  +   \frac{ {x}^{4} }{4!}  + ... \\  = (1 - \frac{ {x}^{2} }{2!}  + \frac{ {x}^{4} }{4!}   -  ...) +i (\frac{x}{1!} - \frac{ {x}^{3} }{3!} + \frac{ {x}^{5} }{5!} - ...) \\  =  \cos(x)  + i \sin(x)

you can put theta incase of x

Similar questions