Math, asked by ashwinalex57, 1 day ago

prove that
log \frac{7}{8}  + log \frac{32}{49}  - log \frac{4}{14}  = log2


right answer= brainalist​

Answers

Answered by jitendra12iitg
0

Answer:

See the explanation

Step-by-step explanation:

  \displaystyle \text{LHS}=(\log \frac{7}{8}+\log \frac{32}{49})-\log\frac{4}{14}

  • Using product rule \log a+\log b=\log(ab)

         \displaystyle =\log(\frac{7}{8}\times \frac{32}{49})-\log \frac{2}{7}\\\\=\log (\frac{4}{7})-\log \frac{2}{7}  

  • Using quotient rule \log a-\log =\log \frac{a}{b}

         =\log( \dfrac{\frac{4}{7}}{\frac{2}{7}})=\log (\frac{4}{7}\times \frac{7}{2})=\log 2=\text{RHS}

Similar questions