Math, asked by llReynardll, 2 months ago

Prove that :-

\longrightarrow \sf \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta}

Don't spam! ​

Answers

Answered by FiercePrince
34

\qquad \sf Prove \:that \:\::\: \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta}\\\\

\:\:\:\bigstar \underline {\bf According \:to \:the \:Question \::\:}\\\\

 \dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta -  \:( \:cosec^2 \theta- cot^2 \:\theta ) \:}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta -  \: \bigg[ ( cosec \theta + cos \theta )  \:( \:cosec \theta- cot\:\theta ) \bigg]  \:}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta} \:\\\\\dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta   \:\bigg[ 1  -\:( \:cosec \theta- cot\:\theta ) \bigg]  \:}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta} \:\\\\  \dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta   \:\bigg[ 1  \:- \:cosec \theta + cot\:\theta  \bigg]  \:}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{cot\theta + cosec\theta   \:\bigg[ \cancel { 1  \:- \:cosec \theta + cot\:\theta } \bigg]  \:}{\cancel{ cot\theta - cosec\theta + 1} } = \dfrac{1 + cos\theta}{sin\theta} \:\\\\  \dashrightarrow \sf \:\: cot\theta + cosec\theta  = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{cos\theta }{sin \theta } + cosec\theta  = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{cos\theta }{sin \theta } + \dfrac{1}{sin \theta}  = \dfrac{1 + cos\theta}{sin\theta} \:\\\\ \dashrightarrow \sf \:\: \dfrac{1 + cos\theta }{sin \theta }  = \dfrac{1 + cos\theta}{sin\theta} \:\\\\

\qquad \underline {\pmb{\bf Hence,  \:Verified \:!\:}}\\

Answered by Anonymous
138

To Prove :-

  •  \sf \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1} = \dfrac{1 + cos\theta}{sin\theta}

Proof:-

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf: \implies L.H.S

\:  \:  \:  \:   \:  \:  \: \pink{ \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta - 1}{cot\theta - cosec\theta + 1}}\\

 \:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta - \big(cosec^2\theta - cot^2\theta\big)}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cot\theta + cosec\theta - \big(cosec\theta + cot\theta\big)\big(cosec\theta - cot\theta\big)}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies \sf \dfrac{cot\theta + cosec\theta\Big(1 - \big(cosec\theta - cot\theta\big)\Big)}{cot\theta - cosec\theta + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cot\theta + cosec\theta\Big(1 - cosec\theta + cot\theta\Big)}{1 - cosec\theta + cot\theta}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf cot\theta + cosec\theta\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies  \sf \dfrac{cos\theta}{sin\theta} + \dfrac{1}{sin\theta}\\

\:  \:  \:  \:   \:  \:  \:  \: \pink{ \: \::\implies \sf \dfrac{1 +cos\theta}{sin\theta}}\\

  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\sf: \implies R.H.S

  • Hence, Proved..!!
Similar questions