Math, asked by Anonymous, 20 days ago

Prove that :-

{\quad \leadsto \quad \bf \Gamma ( s ) \cdot \zeta ( s ) = \displaystyle \bf  \int_{ \bf 0}^{\bf \infty} \bf \dfrac{{u}^{s-1}}{e^{u} - 1} du}

Attachments:

Answers

Answered by sajan6491
9

Question

 \color{red}{  \quad \rm \Gamma ( s ) \cdot \zeta ( s ) = \displaystyle \bf \int_{ \rm0}^{\rm\infty} \rm \dfrac{{u}^{s-1}}{e^{u} - 1} du}

Answer

  \displaystyle\rm \red{ \Gamma(x) =  \int \limits _{t = 0}^{t =  \infty }  {t}^{x - 1}   \:  {e}^{ - t} }

  \displaystyle\rm \red{ \Gamma(x) =  \int \limits _{t = 0}^{t =  \infty }  {t}^{x - 1}   \:  {e}^{ - t}  \: dt}

  \displaystyle\rm \red{  \int \limits _{u = 0}^{u =  \infty }  {(nu)}^{x - 1}   \:  {e}^{ - nu}  \: du}

  \displaystyle\rm \red{  \int \limits _{ 0}^{ \infty }  {n}^{x - 1}   \cdot {u}^{x - 1}  \cdot {e}^{ - nu}   \:  {n}^{1} \: du}

  \displaystyle\rm \red{   \frac{\Gamma(x)}{ {n}^x }  =   \frac{\displaystyle \rm \cancel{{n}^{x} } \int \limits _{0}^{ \infty }  u^{x - 1}   \cdot  {e}^{ - nu} \: du}{  \cancel{{n}^{x} }}  }

  \displaystyle\rm \red{    \sum_{n = 1}^{ \infty }  \bigg( \Gamma(x) \cdot \frac{1}{ {n}^{x}  }\bigg) =   \sum_{n = 1}^{ \infty }  \left(  \int \limits_{0}^ \infty   {u}^{x - 1}   \:  {e}^{ - nu} \: du \right) }

  \displaystyle\rm \red{       \Gamma(x) \cdot \sum_{n = 1}^{ \infty } \frac{1}{ {n}^{x} }  =     \int \limits_{0}^ \infty   {u}^{x - 1} \sum_{n = 1}^{ \infty }  \: ( {e}^{ - u}  {)}^n\: du  }

  \displaystyle\rm \red{       \Gamma(x)   \: \zeta(x)=     \int \limits_{0}^ \infty   {u}^{x - 1}   \: \frac{( {e}^{ - u}) {e}^{u}  }{(1 -  {e}^{ - u} ) {e}^u }   \: du\color{red}{  \quad \rm  = \displaystyle \bf \int_{ \rm0}^{\rm\infty} \rm \dfrac{{u}^{s-1}}{e^{u} - 1} du} }

 \color{red}{  \quad \rm \Gamma ( s ) \cdot \zeta ( s ) = \displaystyle \bf \int_{ \rm0}^{\rm\infty} \rm \dfrac{{u}^{s-1}}{e^{u} - 1} du}

Similar questions