Math, asked by Anonymous, 20 hours ago

Prove that :-



 \quad \qquad { \bigstar { \boxed { \underline { \underline { \boxed { \red { \bf { {e}^{ix} = Cos x + i.Sin x }}}}}}}}{\bigstar}

Answers

Answered by SparklingBoy
68

We know that :

\\ \cos \text x = 1 - \frac{ {\text x}^{2} }{2!} + \frac{ {\text x}^{4} }{4!} - \: . \: . \: . \: . \\ \\

 \sin \text x = {\text x} - \frac{ {\text x}^{3} }{3!} + \frac{ {\text x}^{5} }{5!} - . \: .\: . \:.\\\\

Also we know ;

 \rm {e}^{x} = 1 + x + \frac{ {x}^{2} }{2!} + \frac{ {x}^{3} }{3!} + \frac{ {x}^{4} }{4!} + \frac{ {x}^{5} }{5!} + \: . \: . \: . \: .\\ \\

\dashrightarrow \text{Replacing \: x \: by} \: i \text x\\ \\

: \implies {\text e}^{i \text x} = 1+ \frac{i\text x}{1!} + \frac{ {i}^{2} {\text x}^{2} }{2!} + \frac{ {i}^{3} {\text x}^{3} }{3!} + \frac{ {i}^{4} {\text x}^{4} }{4!} + \frac{ {i}^{5} {\text x}^{5} }{5!} + . \: .\: . \: .\: .\\ \\

= 1 + {i\text x} + \frac{ ( - 1){\text x}^{2} }{2!} + \frac{ ( - i){\text x}^{3} }{3!} + \frac{ (1) {\text x}^{4} }{4!} + \frac{ ({i}) {\text x}^{5} }{5!} + \: .\: .\: . \: .\\ \\

➡️ Separating imaginary and real terms ;

 \\ : \implies {\text e}^{i \text x} = \bigg[ 1 - \frac{ {\text x}^{2} }{2!} + \frac{ {\text x}^{4} }{4!} - \: . \: . \: . \: . \bigg] + i \bigg[{ {\text x} } - \frac{ {\text x}^{3} }{3!} + \frac{ {\text x}^{5} }{5!} - . \: .\: . \:. \bigg]\\ \\

➡️ Using value of cos(x) and sin(x) :

\purple{ \large : \implies \underline {\boxed{ \pmb{ {\text e}^{i \text x} = \cos \text x + i \sin \text x} }}} \\ \\

\large \blue \maltese \: \: \underline{\pink{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

  • The about proved formula is known as Euler's formula.
Answered by NewtonBaba420
41

We know that :

\\ \cos \text x = 1 - \frac{ {\text x}^{2} }{2!} + \frac{ {\text x}^{4} }{4!} - \: . \: . \: . \: . \\ \\

 \sin \theta = {\text x} - \frac{ {\text x}^{3} }{3!} + \frac{ {\text x}^{5} }{5!} - . \: .\: . \:.\\\\

Also we know ;

 \rm {e}^{x} = 1 + x + \frac{ {x}^{2} }{2!} + \frac{ {x}^{3} }{3!} + \frac{ {x}^{4} }{4!} + \frac{ {x}^{5} }{5!} + \: . \: . \: . \: .\\ \\

\dashrightarrow \text{Replacing \: x \: by} \: i \text x\\ \\

: \implies {\text e}^{i \text x} = 1+ \frac{i\text x}{1!} + \frac{ {i}^{2} {\text x}^{2} }{2!} + \frac{ {i}^{3} {\text x}^{3} }{3!} + \frac{ {i}^{4} {\text x}^{4} }{4!} + \frac{ {i}^{5} {\text x}^{5} }{5!} + . \: .\: . \: .\: .\\ \\

= 1 + {i\text x} + \frac{ ( - 1){\text x}^{2} }{2!} + \frac{ ( - i){\text x}^{3} }{3!} + \frac{ (1) {\text x}^{4} }{4!} + \frac{ ({i}) {\text x}^{5} }{5!} + \: .\: .\: . \: .\\ \\

➡️ Separating imaginary and real terms ;

 \\ : \implies {\text e}^{i \text x} = \bigg[ 1 - \frac{ {\text x}^{2} }{2!} + \frac{ {\text x}^{4} }{4!} - \: . \: . \: . \: . \bigg] + i \bigg[{ {\text x} } - \frac{ {\text x}^{3} }{3!} + \frac{ {\text x}^{5} }{5!} - . \: .\: . \:. \bigg]\\ \\

➡️ Using value of cos(x) and sin(x) :

\purple{ \large : \implies \underline {\boxed{ \pmb{ {e}^{i \text x} = \cos \text x + i \sin \text x} }}} \\ \\

\large \blue \maltese \: \: \underline{\pink{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

Similar questions