Math, asked by Anonymous, 1 month ago

Prove that :-

 \quad \qquad { \bigstar { \underline { \boxed { \tt { {e}^{iπ} + 1 = 0 } } } } }

Answers

Answered by 852003
2

I hope it's helpful to you

Attachments:
Answered by kinzal
16

Prove :

 \sf \longrightarrow e ^{x}  = 1 + x +  \frac{ {x}^{2} }{2!}  +  \frac{ {x}^{3} }{3!}  +  \frac{ {x}^{4} }{4!}  + ... \\

 \sf \longrightarrow sin(x) = x -  \frac{ {x}^{3} }{3!}  +  \frac{x ^{5} }{5!}  -  \frac{ {x}^{7} }{7!}  + ... \\

 \sf \longrightarrow cos(x) = 1 -  \frac{ {x}^{2} }{2!}  +  \frac{ {x}^{4} }{4!}  +  \frac{ {x}^{6} }{6!}  + ... \\

Now, add sin(x) + cos(x)

  •  \sf sin(x) + cos(x) = 1 + x -  \frac{ {x}^{2} }{2!}  -  \frac{ {x}^{3} }{3!}  +  \frac{ {x}^{4} }{4!}  +  \frac{ {x}^{5} }{5!}  -  \frac{ {x}^{6} }{6!}  - ... \\

  •  \sf e ^{ix}  = 1 + ix +  \frac{(ix )^{2} }{2!}  +  \frac{(ix)^{3} }{3!}  +  \frac{(ix) ^{4} }{4!}  + ... \\

 \sf \bigg ( i¹ = i \: \: , \: \:  i ² = -1  \: \: ,  \: \: i ³ = - i \: \:  , \: \:  i ⁴ = 1 \: \:  , \: \:  i ⁵ = i  \: \: , \: \:  i ⁶ = - 1 \: \:  \bigg) ____(1)

Simplify :

  •  \sf e ^{ix}  = 1 + ix +  \frac{i ^{2}x ^{2}  }{2!}  +  \frac{i ^{3} {x}^{3}  }{3!}  +  \frac{i ^{4} {x}^{4}  }{4!}  +  \frac{ {i}^{5} {x}^{5}  }{5!}  +  \frac{i ^{6}  {x}^{6} }{6!}  + ... \\

Now, According to (1)

  •   \sf e ^{ix}  = 1 + ix -  \frac{ {x}^{2} }{2!}  -  \frac{ {ix}^{3} }{3!}  +  \frac{ {x}^{4} }{4!}  +  \frac{ix ^{5} }{5!}  -  \frac{ {x}^{6} }{6!}  + ... \\

  •  \sf \sf {e}^{ix}  =  \bigg(1 -  \frac{ {x}^{2} }{2!}  +  \frac{ {x}^{4} }{4!}  -  \frac{ {x}^{6} }{6!}  + ... \bigg) + i \bigg( x -  \frac{x ^{3} }{3!}  +  \frac{ {x}^{5} }{5!}  + ... \bigg) \\

  •  \sf \bigg(1 -  \frac{ {x}^{2} }{2!}  +  \frac{ {x}^{4} }{4!}  -  \frac{x^{6} }{6!}  + ... \bigg) \longrightarrow Real Coverage With cos(x)

  •  \sf \bigg(x -  \frac{ {x}^{3} }{3!}  +  \frac{ {x}^{5} }{5!}  + ... \bigg) \longrightarrow Imaginary Coverage With sin(x)

  •  \sf e ^{ix}  =  \cos(x)  + i \sin(x)  :  \longrightarrow \red{\underline{\underline{Euler's  \:  \: Formula}}}

Now, put X = π

  •  \sf {e}^{i\pi}  =  \cos(\pi)  + i \sin(\pi)  \\

 \longrightarrow \sf \cos(\pi)  =  - 1

 \longrightarrow \sf  \sin(\pi)  = 0

  •  \sf {e}^{i\pi}  =  \cos(\pi)  + i \sin(\pi)  \\

  •  \sf {e}^{i\pi}  = - 1 + i(0)

  •  \sf e ^{i\pi}  =  - 1

  •   \sf e^{i\pi}  + 1 = 0 : \longrightarrow \green{\underline{\underline{Euler's  \:  \: Identity}}}

Hence, it proven.

I hope it helps you ❤️✔️

Similar questions