Math, asked by GoldenCasket, 1 day ago

Prove that :-
  \rm \cos6x = 32  {cos}^{6}x - 48 {cos}^{4}x + 18 { \cos }^{2}x - 1
Quality Answers Needed !!

Answers

Answered by mathdude500
47

\large\underline{\sf{Solution-}}

Consider

\rm \: cos6x

can be rewritten as

\rm \:  =  \: cos2(3x)

We know,

\boxed{\tt{ cos2x = 2 {cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \:  =  \:  {2cos}^{2}3x - 1

can be further rewritten as

\rm \:  =  \: 2 {(cos3x)}^{2}  - 1

We know,

\boxed{\tt{ cos3x =  {4cos}^{3}x - 3cosx \: }} \\

So, using this identity, we get

\rm \:  =  \: 2 {(4 {cos}^{3} x - 3cosx)}^{2}  - 1

We know,

\boxed{\tt{  {(x - y)}^{2} =  {x}^{2}  +  {y}^{2}  -  2xy \: }} \\

So, using this identity, we get

\rm \:  =  \: 2\bigg[ \: 16 {cos}^{6}x +  {9cos}^{2}x - 24 {cos}^{4}x \: \bigg] - 1

\rm \:  =  \:\: 32 {cos}^{6}x +  {18cos}^{2}x - 48 {cos}^{4}x \:  - 1

can be re-arranged as

\rm \:  =  \:\: 32 {cos}^{6}x  \: -   \: {48cos}^{4}x  \:  +  \: 18{cos}^{2}x \:  - 1

Hence,

\boxed{\tt{ \cos6x = 32 {cos}^{6}x - 48 {cos}^{4}x + 18 { \cos }^{2}x - 1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x}} \\

\boxed{\tt{ cos2x = 1 -  2{sin}^{2}x}} \\

\boxed{\tt{ cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x } }} \\

\boxed{\tt{ sin2x =  \frac{2tanx}{1 +  {tan}^{2}x } }} \\

\boxed{\tt{ tan2x =  \frac{2tanx}{1 -   {tan}^{2}x } }} \\

\boxed{\tt{ sin2x = 2 \: sinx \: cosx \: }} \\

\boxed{\tt{ sin3x  \: =  \: 3sinx \:  -  \:  {4sin}^{3}x \: }} \\

Answered by Anonymous
48

Question :-

Prove that :

\mapsto \bf cos6x =\: 32cos^{6}x - 48cos^{4}x + 18cos^{2}x - 1\\

Solution :-

\bigstar\: \: \sf\bold{\purple{L.H.S =\: cos6x}}

\implies \sf cos2.(3x)

As we know that :

\clubsuit\: \: \sf\bold{\pink{cos2x =\: 2cos^{2}x - 1}}\\

\clubsuit\: \: \sf\bold{\pink{cos 3x =\: 4cos^{3}x - 3 cosx}}\\

So, by replacing by 3x we get,

\implies \sf cos2(3x) =\: 2cos^{2}(3x) - 1\\

\implies \sf cos6x =\: 2cos^{2} 3x - 1\\

\implies \sf 2(cos 3x)^2 - 1\\

Now, by putting cos 3 x = 4 cos³ x - 3 cos x we get,

\implies \sf 2(4 cos^{3}x - 3 cos x)^2 - 1\\

Again, as we know that :

\clubsuit\: \: \sf\bold{\pink{(a - b)^2 =\: a^2 + b^2 - 2ab}}\\

So, by using this identities we get,

\implies \sf 2\bigg[(4 cos^3 x)^2 + (3 cos x)^2 - 2(4 cos^{3} x) \times (3 cos x)\bigg] - 1\\

\implies \sf 2\bigg[(16 cos^{6} x + 9 cos^{2} x - 24 cos^{4} x)\bigg] - 1\\

\implies \sf 2 \times 16 cos^{6} x + 2 \times 9 cos^{2} x - 2 \times 24 cos^{4} x - 1\\

\implies \sf 32 cos^{6}x + 18 cos^{2}x - 48 cos^{4} x - 1\\

By rearrange we get,

\implies \sf\bold{\red{32 cos^{6}x - 48 cos^{4} x + 18 cos^{2} x - 1}}\\

\\

Again,

\bigstar\: \: \sf\bold{\purple{R.H.S =\: 32 cos^{6} x - 48 cos^{4} x + 18 cos^{2} x - 1}}\\

\implies \sf\bold{\red{32 cos^{6}x - 48 cos^{4} x + 18 cos^{2} x - 1}}\\

\leadsto \sf\bold{L.H.S =\: R.H.S}

\: \: \: \: \: \: \: \: \: \: \: \: \sf\boxed{\bold{\green{HENCE\: PROVED}}}\: \: \\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions