Math, asked by NITESH761, 5 days ago

Prove that :

 \rm \dfrac{1}{1 + \sin ^2 θ}+ \dfrac{1}{1+ \cos ^2 θ}+ \dfrac{1}{1 + \sec ^2 θ}+ \dfrac{1}{1+ \cosec ^2 θ}=2

Answers

Answered by user0888
33

\Huge\text{Refer to the explanation.}

\huge\text{\underline{\underline{Question}}}

Prove that -

\text{$\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{1}{1+\sec^{2}\theta}+\dfrac{1}{1+\csc^{2}\theta}=2.$}

\huge\text{\underline{\underline{Topic}}}

\Large\text{\{Trigonometry\}}

\bold{Reciprocal\ trigonometric\ ratios}

\text{$\bullet\ \csc\theta=\dfrac{1}{\sin\theta}$}

\text{$\bullet\ \sec\theta=\dfrac{1}{\cos\theta}$}

\text{$\bullet\ \cot\theta=\dfrac{1}{\tan\theta}$}

\huge\text{\underline{\underline{Explanation}}}

L.H.S

\text{$=\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{1}{1+\sec^{2}\theta}+\dfrac{1}{1+\csc^{2}\theta}$}

\bold{According\ to\ the\ reciprocal\ trigonometric\ ratios,}

\text{$=\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{1}{1+\dfrac{1}{\cos^{2}\theta}}+\dfrac{1}{1+\dfrac{1}{\sin^{2}\theta}}$}

\bold{By\ multiplying\ numerator\ and\ denominator,}

\text{$=\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{\cos^{2}\theta}{\cos^{2}\theta+1}+\dfrac{\sin^{2}\theta}{\sin^{2}\theta+1}$}

\bold{By\ rearrangning\ the\ denominator,}

\text{$=\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{\cos^{2}\theta}{1+\cos^{2}\theta}+\dfrac{\sin^{2}\theta}{1+\sin^{2}\theta}$}

\text{$=\dfrac{1+\sin^{2}\theta}{1+\sin^{2}\theta}+\dfrac{1+\cos^{2}\theta}{1+\cos^{2}\theta}$}

\text{$=1+1$}

\text{$=2$}

\text{$=$} R.H.S

\huge\text{\underline{\underline{Final answer}}}

Hence, we proved that -

\text{$\cdots\longrightarrow\boxed{\dfrac{1}{1+\sin^{2}\theta}+\dfrac{1}{1+\cos^{2}\theta}+\dfrac{1}{1+\sec^{2}\theta}+\dfrac{1}{1+\csc^{2}\theta}=2.}$}

Similar questions