Math, asked by bhaikn65, 1 year ago

Prove that

sec {}^{ - 1} x +  {cosec}^{ - 1} x =  \frac{\pi}{2}

Answers

Answered by Swarnimkumar22
7
 \bf \: Let \: \: \: \: {sec}^{ - 1} x = \theta \: \: \: \: \: \: \: \: \: \: \: \: \: .......(1)\\ \\ so \: \: \bf \: \: \: x = \: sec \: \theta \:

 \bf \: We \: know \: that \: Formula \: \boxed{ \bf \: cosec ( \frac{\pi}{2} - \theta )= sec \: \theta}

Now, putting it value

 \bf \: \: cosec \: ( \frac{\pi}{2} - \theta) = x \\ \\ \\ \implies \: \bf \: \: ( \frac{\pi}{2} - \theta) = {cosec}^{ - 1} x \\ \\ \: lets \: put \: the \: value \: of \: \theta \: from \: the \: first \: equation \\ \\ \\ \implies \: \bf \: \: ( \frac{\pi}{2} - {sec}^{ - 1} x) = {cosec}^{ - 1} x \\ \\ \\ \implies \: \boxed{\bf \: \: sec {}^{ - 1}x + cosec {}^{ - 1} x = \frac{\pi}{2} }
Similar questions