Math, asked by Anonymous, 8 months ago

Prove that: \sf{(1+i)^{4}\times(1+\frac{1}{i})^{4}=16}

Answers

Answered by Rajshuklakld
12

Simple question

take LHS

LHS=(1+i)^4 ×(i+1/i)^4

LHS=(1+i)^4×(i+1)^4/i^4

we know that i^4=1

LHS=(1+i)^4×(1+i)^4

we know,(1+i)^2=1+i^2+2i

=2i

{(1+I)^2}^2=(2i)^2=-4

putting this value we get

LHS=-4×-4=16

NOTE=>i=√-1,so i^2=-1

Answered by Asterinn
7

Given :

\sf{(1+i)^{4}\times(1+\dfrac{1}{i})^{4}=16}

where i = √-1

To prove :

  • LHS = RHS

Proof :

LHS :-

\sf{(1+i)^{4}\times(\dfrac{i + 1}{i})^{4}}

\sf{(1+i)^{4}\times\dfrac{ {(i + 1)}^{4} }{ {(i)}^{4} }}

we know that :-

\sf {{i}}^{4}  = 1

Therefore we get :-

\sf{(1+i)^{4}\times\dfrac{ {(i + 1)}^{4} }{ 1 }}

\sf{(1+i)^{4}\times(1+i)^{4}}

\sf{ {((1+i)^{2})}^{2} \times{((1+i)^{2})}^{2}}

Now :-

\sf{(1 + i)}^{2} =  {1}^{2}  +  {i}^{2}  + 2i

  • now we know that i² = -1

\sf{(1 + i)}^{2} =  1 - 1+ 2i

\sf{(1 + i)}^{2} = 2i

\sf{(2i)^{2}\times(2i)^{2}}

\sf{4 \times ( - 1)\times4 \times ( - 1)}

\sf{16}

Therefore LHS = RHS

hence proved

Similar questions