Math, asked by bestquestions001, 1 month ago

prove that


 \sf \: 2cos \frac{\pi}{13}cos \frac{9\pi}{13}  + cos  \frac{3\pi}{13}  + cos \frac{5\pi}{13}  = 0 \\   \\


Note :-

no copy paste answer
don't spam plz ​

Answers

Answered by itzgeniusgirl
32

\large\underline{\sf{question \: -}}

\rm \: 2cos \frac{\pi}{13}cos \frac{9\pi}{13} + cos \frac{3\pi}{13} + cos \frac{5\pi}{13} = 0 \\

\large\underline{\sf{formula \: -}}

\rm :\longmapsto\:cosx + cosy = 2cos( \frac{x + y}{2})cos( \frac{x - y}{2}) \\  \\

\large\underline{\sf{Solution-}}

 \sf \: lhs = 2cos \frac{\pi}{13} cos \frac{9\pi}{13}  + cos \frac{3\pi}{13}  + cos \frac{5x}{13} \\  \\

using formula

\rm :\longmapsto\:cosx + cosy = 2cos( \frac{x + y}{2})cos( \frac{x - y}{2}) \\  \\

by putting values we get,

\rm :\longmapsto\: 2cos \frac{\pi}{13} cos \frac{9\pi}{13}  + 2cos \binom{ \frac{3\pi + 5\pi}{13 + 13} }{2} cos \binom{ \frac{3\pi - 5\pi}{13 - 13} }{2}  \\  \\

by further calculation

\rm :\longmapsto\: 2cos \frac{\pi}{13} cos \frac{9\pi}{13}  + 2cos \frac{4\pi}{13} cos( \frac{ - \pi}{13}) \\  \\ \rm :\longmapsto\: 2cos \frac{\pi}{13} cos \frac{9\pi}{13}  + 2cos \frac{4\pi}{13} cos \frac{\pi}{13}  \\  \\

now taking out the common terms

\rm :\longmapsto\:2cos \frac{\pi}{13} [cos \frac{9\pi}{13}  + cos \frac{4\pi}{13}]  \\  \\

it can be written as

\rm :\longmapsto\: 2cos \frac{\pi}{13} \big[ 2cos \binom{ \frac{9\pi + 4\pi}{13 + 13} }{2} cos \binom{ \frac{9\pi - 4\pi}{13 - 13} }{2}]  \\  \\

on further calculation

\rm :\longmapsto\: 2cos \frac{\pi}{13} [2cos \frac{\pi}{2} cos \frac{5\pi}{26}] \\  \\

\rm :\longmapsto\: 2cos \frac{\pi}{13}  \times 2 \times 0 \times cos \frac{5\pi}{26}  \\  \\ \rm :\longmapsto\:0 \\  \\

hence proved

Similar questions