Prove that
Answers
Given to prove :-
cos²x + cos²(x+π/3)+ cos²(x-π/3) = 3/2
Solution:-
Take L.H.S
As we know that π is 180° Substitute there
cos²x + cos²(x +180°/3) + cos²(x-180°/3)
cos²x + cos²(x+60°) + cos²(x-60°)
From Trigonometric identities
sin²A + cos²A = 1
cos²A = 1-sin²A
So,
cos²(x-60°) = 1- sin²(x-60°)
cos²x + cos²(x+60°) + 1-sin²(x-60°)
1 + cos²x + cos²(x+60°) -sin²(x-60°)
cos²(x+60°) -sin²(x-60°) in form of cos²A -sin²B
We all know that ,
cos(A+B) cos(A-B) = cos²A -sin²B
Applying that formula
1 + cos²x + cos(x+60°+x-60°) . cos(x+60°-x+60°)
1 + cos²x + [cos 2x.cos(120°)]
We know that cos 2x in terms of cos
cos2x = 2cos²x - 1
and cos120° = -1/2
1+ cos²x +[ 2cos²x-1×-1/2 ]
1 + cos²x+[ -2cos²x +1 /2]
Taking L.C.M
2 + 2cos²x -2 cos²x + 1 /2
2+1/2
3/2
So,
cos²x + cos²(x+π/3)+ cos²(x-π/3) = 3/2
Hence proved
Used formulae:-
cos(A +B) cos (A-B) = cos²A - sin²B
cos²A = 1-sin²A
cos2A = 2cos²A - 1
cos120° = -1/2
Answer :
cos²x + cos²(x + π/3) + cos²(x - π/2) = 3/2
Step-by-step explanation :
cos²x + cos²(x + π/3) + cos²(x - π/2) = 3/2
Considering L.H.S :
cos²x + cos²(x + π/3) + cos²(x - π/2)
(1 + cos2x)/2 + [1+cos2(x+π/3)]/2 + [1+cos2(x-π/3)]/2
1/2[1 + cos2x + 1 + cos2(x+π/3)] + 1 + cos2(x-π/3)
Let x = (2x+2π)/3 and y = (2x-2π)/3 :
Then we get :
1/2[3 + cos2x + 2cos(2x-2π/3+2x-2π/3)]cos[2x + 2π/3 - (2x-2π/3)]/2
1/2[3 + cos2x + cos(4x/2)cos(4π/3/2)]
1/2[3 + cos2x + 2cos2x cos(π - π/3)
1/2[3 + cos2x + 2cos2x (-cosπ3)
1/2[3 + cos2x + 2cos2x(-1/2)
1/2[3 + cos2x - cos2x]
3/2
∴ L.H.S = R.H.S
Formulae used :
cos2x = 2cos² - 1 = 1 + cos2x/2
cosx + cosy = 2cos(x+y/2)cos(x-y/2)
cos(π - θ) = -cosθ