Math, asked by Ꚃhαtαkshi, 3 months ago

prove that
\sf cos (A+B)×cos (A-B)=cos^2A-sin^2B



Anonymous: hi
InsaneBanda: hlo
Anonymous: hru?
Anonymous: please inbx me

Answers

Answered by VioletMoon
17

\huge{\mid{\boxed{\mathbb{\color{purple}{ANSWER}}}}\mid}

=> cos(A+B) cos(A-B)

=> (cosA cosB - sinA sinB) (cosA cosB+ sinA sinB)

=> cos²A cos²B - sin²A sin²B

=> cosA (1-sin²B) - (1 - cos²A) sin²B + cos²A sin²B

=> cos²A - sin²B

\huge \mathtt \purple{@VioletMoon}

Answered by InsaneBanda
11

 \huge\boxed{\fcolorbox{white}{pink}{AnsweR}}

=> cos(A+B) cos(A-B)

=> (cosA cosB - sinA sinB) (cosA cosB+ sinA sinB)

=> cos²A cos²B - sin²A sin²B

=> cosA (1-sin²B) - (1 - cos²A) sin²B + cos²A sin²B

=> cos²A - sin²B

\huge\purple{\mathfrak{@ʂɧı۷ą4548}}

Similar questions