Math, asked by nitin3231, 2 months ago

Prove that :-

 \sf {cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ =\ sin(x\ +\ y)}

Answers

Answered by INSIDI0US
102

Step-by-step explanation:

\underline{\underline{\maltese\: \: \textbf{\textsf{To\ Prove}}}}

 \sf \circ\ {cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ =\ sin(x\ +\ y)}

\underline{\underline{\maltese\: \: \textbf{\textsf{Solution}}}}

By taking the L.H.S

➤ We know that :-

  •  \sf {cos\ (A\ +\ B)\ =\ cos\ A\ cos\ B\ -\ sin\ A\ sin\ B}

➠ The equation given in question is of this form, where,

  •  \sf {A\ =\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ B\ =\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)}

➤ Therefore,

 \sf \rightarrow {cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)}

 \sf \rightarrow {cos\ \bigg[\bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ +\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg) \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{4}\ -\ x\ +\ \dfrac{\pi}{4}\ -\ y \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{4}\ +\ \dfrac{\pi}{4}\ -\ x\ -\ y \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{2}\ -\ (x\ +\ y) \bigg]}

  •  \sf {Now,\ putting\ {\pi}\ =\ 180^{\circ}}

 \sf \rightarrow {cos\ \bigg[\dfrac{180^{\circ}}{2}\ -\ (x\ +\ y) \bigg]}

 \sf \rightarrow {cos\ [90^{\circ}\ -\ (x\ +\ y)]}

  •  \sf {cos\ (90^{\circ}\ -\ \theta)\ =\ sin\ \theta}

 \sf \rightarrow {sin\ (x\ +\ y)}

 \sf \rightarrow {R.H.S}

 \large {\therefore{\underline{\boxed{\boxed{\sf{cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ =\ sin(x\ +\ y)}}}}}}

\underline{\textbf{\textsf{Hence\ Proved...!!!}}}

Answered by TheDiamondBoyy
19

⠀⠀{\rm{\pink{\underline{\underline{★Step-by-step -Explaination★}}}}}

\underline{\underline{\maltese\: \: \textbf{\textsf{To\ Prove}}}}

 \sf \circ\ {cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ =\ sin(x\ +\ y)}

\underline{\underline{\maltese\: \: \textbf{\textsf{Solution}}}}

{\rm{\red{\underline{\underline{From\: L.H.S : }}}}}

➤ We know that :-

 \sf {cos\ (A\ +\ B)\ =\ cos\ A\ cos\ B\ -\ sin\ A\ sin\ B}

➠ The equation given in question is of this form, where,

 \sf {A\ =\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ B\ =\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)}

➤ Therefore,

 \sf \rightarrow {cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)}

 \sf \rightarrow {cos\ \bigg[\bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ +\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg) \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{4}\ -\ x\ +\ \dfrac{\pi}{4}\ -\ y \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{4}\ +\ \dfrac{\pi}{4}\ -\ x\ -\ y \bigg]}

 \sf \rightarrow {cos\ \bigg[\dfrac{\pi}{2}\ -\ (x\ +\ y) \bigg]}

 \sf {Now,\ putting\ {\pi}\ =\ 180^{\circ}}

 \sf \rightarrow {cos\ \bigg[\dfrac{180^{\circ}}{2}\ -\ (x\ +\ y) \bigg]}

 \sf \rightarrow {cos\ [90^{\circ}\ -\ (x\ +\ y)]}

 \sf {cos\ (90^{\circ}\ -\ \theta)\ =\ sin\ \theta}

 \sf \rightarrow {sin\ (x\ +\ y)}

 \sf \rightarrow {R.H.S}

 \large {\therefore{\underline{\boxed{\boxed{\sf{cos \ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ cos\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ -\ sin\ \bigg(\dfrac{\pi}{4}\ -\ x \bigg)\ sin\ \bigg(\dfrac{\pi}{4}\ -\ y \bigg)\ =\ sin(x\ +\ y)}}}}}}

\underline{\textbf{\textsf{Hence\ Proved...!!!}}}

Similar questions