Math, asked by DynamicNinja, 4 months ago

Prove that \sf\dfrac{1 + CosA}{1 - CosA} = {(CosecA + CotA)}^{2}


Anonymous: mujge chaye
Anonymous: bass 6

Answers

Answered by darksoul3
19

\huge \fbox \red{Solution}

1 + CosA/1 - cosA = (CosecA + CotA)²

R.H.S.

= (1/sinA -cosA/sinA)²

= (1-cosA)²/sin²A

= (1-cosA)²/(1-cos²A)

= (1-cos)A)²/(1-cosA)(1+cosA)

= (1-cosA)/(1+cosA). Proved.

Answered by Anonymous
34

Solution

1 + CosA/1 - cosA = (CosecA + CotA)²

R.H.S.

= (1/sinA -cosA/sinA)²

= (1-cosA)²/sin²A

= (1-cosA)²/(1-cos²A)

= (1-cos)A)²/(1-cosA)(1+cosA)

= (1-cosA)/(1+cosA). Proved.

Similar questions