Math, asked by Anonymous, 1 month ago

Prove that :
\sf{\dfrac{cosA-sinA+1}{cosA+sinA-1} = cosecA+cotA

General Instructions :
Don't Spam ❌ . Spammers will be reported
Use G00GLE for answering but answer should be correct .

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer in above pics

pls mark I as brainliest

you can also prove it by theorem on equal ratios

both would be ok and correct

Attachments:
Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove  \: that \: \dfrac{cosA - sinA + 1}{cosA + sinA - 1}  = cosecA \:  +  \: cotA

\large\underline{\bf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{cosA - sinA + 1}{cosA + sinA - 1}

☆ Divide numerator and denominator by sinA, we get

 \rm \:=  \: \:\dfrac{\dfrac{cosA}{sinA}  - \dfrac{sinA}{sinA}  + \dfrac{1}{sinA} }{ \:  \: \:  \:   \: \dfrac{cosA}{sinA}  + \dfrac{sinA}{sinA}  - \dfrac{1}{sinA}  \:  \:  \:  \:  \: }

 \rm \:=  \: \:\dfrac{cotA  - 1 + cosecA}{cotA + 1 - cosecA}

 \:  \:  \:  \:  \: \red{\bigg \{  \sf \: \because \: \dfrac{cosx}{sinx}  =  cotx\: and \: \dfrac{1}{sinx}  = cosecx\bigg \}}

 \rm \:=  \: \:\dfrac{cotA+ cosecA - 1}{cotA + 1 - cosecA}

 \rm \:=  \: \:\dfrac{cotA+ cosecA - ( {cosec}^{2}A -  {cot}^{2}A)}{cotA + 1 - cosecA}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \sf \because \:  {cosec}^{2}x -  {cot}^{2}x = 1 \bigg \}}

 \rm \:=  \: \:\dfrac{(cotA + cosecA) - (cosecA + cotA)(cosecA - cotA)}{cotA  +  1  - cosecA}

 \rm \:=  \: \:\dfrac{(cotA + cosecA) \:  \cancel{(1 - cosecA + cotA)}}{ \cancel{1 - cosecA + cotA}}

 \rm \:=  \: \:cosecA + cotA

{{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions