Math, asked by hfehdkfk, 1 month ago

Prove that :
\sf{\dfrac{sinA}{1\:+\:cotA}}\:-\:\sf{\dfrac{cosA}{1\:+\:tanA}}\:\sf\:=\:sinA\:-\:cosA

Answers

Answered by SparklingBoy
73

\large \bf \clubs \:   To \:  Find :-

\small\bf\dfrac{sinA}{1 + cotA} - \dfrac{cosA}{1 + tanA}  =sinA - {cosA}

-----------------------

\large \bf \clubs \:  Formulae \:  Used  :-

-----------------------

\bf\maltese\:\:\: tanA=\dfrac{sinA}{cosA} \\ \\ \bf\maltese\:\:\:cotA=\dfrac{cosA}{sinA} \\ \\\bf\maltese\:\:\:a^{2} -b^{2} =(a-b) (a+b)

-----------------------

\large \bf \clubs \:  Proof  :-

\LARGE\bf{LHS} :  -

\sf\dfrac{sinA}{1 + cotA}  - \dfrac{cosA}{1 + tanA} \\ \\ \sf=\dfrac{sinA}{1 + \dfrac{cosA}{sinA} }  - \dfrac{cosA}{1 + \dfrac{sinA}{cosA} }\\ \\\sf=\dfrac{sin^2A}{sinA + cosA} - \dfrac{cos^{2}A }{cosA + sinA} \\ \\ \sf=\dfrac{sin^2A-cos^2A}{sinA + cosA} \\ \\ \sf  =  \frac{ \cancel{(sinA + cosA)}(sinA  -  cosA)}{ \cancel{sinA + cosA}}  \\  \\  \bf= sinA + cosA

\LARGE=\bf{RHS}

 \Large \purple{  \bf\bigstar  \: Hence  \: Proved  \:  \bigstar}

-----------------------

\large \bf \clubs \:  Additional \:  Info  :-

\qquad \pink{\bigstar \: \bf Fundamental  \: Trigonometric\:\bigstar} \\ \qquad\bf\pink{\bigstar\:Identities\:\bigstar}

\large\qquad \boxed{\boxed{\begin{array}{cc}  \maltese \:  \sf \:  { \sin }^{2} \theta +  { \cos}^{2} \theta  = 1 \\  \\  \maltese\sf  \:  \:   { \sec}^{2}  \theta = 1 +  { \tan}^{2}  \theta \\  \\  \maltese \:  \sf \: { \cosec}^{2}  \theta = 1 +  { \cot}^{2}  \theta \end{array}}}

-----------------------


rsagnik437: Awesome ! :)
Answered by Itzheartcracer
54

Correct Question :-

sin A/1 + cotA - cosA/1 + tanA = sinA - cosA

Required Proof :-

\sf\dfrac{sinA}{1 + cotA} - \dfrac{cosA}{1 + tanA} = sinA + cosA

\sf \bullet cotA = \dfrac{cosA}{sinA} \;\;\& \;\;\;\bullet tanA=\dfrac{sinA}{cosA}

\sf\dfrac{sinA}{1+\dfrac{cosA}{sinA}} - \dfrac{cosA}{1 + \dfrac{sinA}{cosA}}=sinA+cosA

\sf\dfrac{cos^2A}{cosA-sinA}+\dfrac{sin^2A}{sinA-cosA}=sinA+cosA

\sf\dfrac{cos^2A}{cosA-sinA}-\dfrac{sin^2A}{cosA-sinA}=sinA+cosA

\sf \dfrac{cos^2A-sin^2A}{cosA-sinA}=sinA+cosA

Apply identity

a² - b² = (a + b)(a - b)

\sf\dfrac{(cosA+ sinA)(cosA-sinA)}{cosA-sinA}=sinA+cosA

\sf sinA+cosA=sinA+cosA


rsagnik437: Great ! :)
Similar questions