Math, asked by Anonymous, 3 months ago

Prove that :
\sf{\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}= sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}

General Instructions :
Don't Spam ❌ . Spammers will be reported
Use G00GLE for answering but answer should be correct .

Answers

Answered by sharanyalanka7
31

Answer:

Step-by-step explanation:

To Prove :-

\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}=sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}

Solution :-

Taking L.H.S :-

= \dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}

=\dfrac{tan\theta+sec\theta-(sec^2\theta-tan^2\theta)}{tan\theta-sec\theta+1}

=\dfrac{tan\theta+sec\theta-((sec\theta+tan\theta)(sec\theta-tan\theta))}{tan\theta-sec\theta+1}

=\dfrac{sec\theta+tan\theta(1-(sec\theta-tan\theta))}{tan\theta-sec\theta+1}

=\dfrac{sec\theta+tan\theta(1-sec\theta+tan\theta)}{tan\theta-sec\theta+1}

=sec\theta+tan\theta

=\dfrac{1}{cos\theta}+\dfrac{sin\theta}{cos\theta}

=\dfrac{1+sin\theta}{cos\theta}

= R.H.S

Similar questions