Math, asked by sajan6491, 5 hours ago

Prove that:-

 \sf \red{\bigg( \frac{ {x}^{a^{2} } + {}^{ {b}^{2} } }{x {}^{ab} } \bigg) {}^{ {}^{a + b} } \sf \bigg( \frac{ {x}^{b^{2} } + {}^{ {c}^{2} } }{x {}^{bc} } \bigg) {}^{ {}^{b + c} } \sf \bigg( \frac{ {x}^{c^{2} } + {}^{ {a}^{2} } }{x {}^{ac} } \bigg) {}^{ {}^{a + c} } \sf = {x}^{2( {a}^{3} + {b}^{c} + {c}^{3} )} }​​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\sf \red{\bigg( \frac{ {x}^{a^{2} } + {}^{ {b}^{2} } }{x {}^{ab} } \bigg) {}^{ {}^{a + b} } \sf \bigg( \frac{ {x}^{b^{2} } + {}^{ {c}^{2} } }{x {}^{bc} } \bigg) {}^{ {}^{b + c} } \sf \bigg( \frac{ {x}^{c^{2} } + {}^{ {a}^{2} } }{x {}^{ac} } \bigg) {}^{ {}^{a + c} } }

Let consider

\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{ {a}^{2}  +  {b}^{2} } }{ {x}^{ab} } \bigg]}^{a + b}

We know,

\rm :\longmapsto\:\boxed{\tt{ \: \frac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n} \: }}

So, using this, we get

 \rm \:  =  \:  {\bigg[{x}^{ {a}^{2}  +  {b}^{2}  - ab} \bigg]}^{a + b}

Now, we know that

\rm :\longmapsto\:\boxed{\tt{ \:  {( {x}^{m})}^{n} =  {x}^{mn} \: }}

So, using this, we get

 \rm \:  =  \:  {x}^{( {a}^{2}  +  {b}^{2}  - ab)(a + b)}

 \rm \:  =  \:  {x}^{ {a}^{3}  +  {b}^{3} }

Now, Consider

\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{ {b}^{2}  +  {c}^{2} } }{ {x}^{bc} } \bigg]}^{b + c}

 \rm \:  =  \:  {\bigg[{x}^{ {b}^{2}  +  {c}^{2}  - bc} \bigg]}^{b + c}

 \rm \:  =  \:  {x}^{( {b}^{2}  +  {c}^{2}  - bc)(b + c)}

 \rm \:  =  \:  {x}^{ {b}^{3}  +  {c}^{3} }

Now, Consider

\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{ {c}^{2}  +  {a}^{2} } }{ {x}^{ca} } \bigg]}^{c + a}

 \rm \:  =  \:  {\bigg[{x}^{ {c}^{2}  +  {a}^{2}  - ca} \bigg]}^{c + a}

 \rm \:  =  \:  {x}^{( {c}^{2}  +  {a}^{2}  - ac)(c + a)}

 \rm \:  =  \:  {x}^{ {c}^{3}  +  {a}^{3} }

Now, Consider

\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{ {a}^{2}  +  {b}^{2} } }{ {x}^{ab} } \bigg]}^{a + b}{\bigg[\dfrac{ {x}^{ {b}^{2}  +  {c}^{2} } }{ {x}^{bc} } \bigg]}^{b + c}{\bigg[\dfrac{ {x}^{ {c}^{2}  +  {a}^{2} } }{ {x}^{ca} } \bigg]}^{c + a}

 \rm \:  =  \:  {x}^{ {a}^{3}  +  {b}^{3} } \times  {x}^{ {b}^{3}  +  {c}^{3} } \times  {x}^{ {c}^{3}  +  {a}^{3} }

We know,

\rm :\longmapsto\:\boxed{\tt{  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n} }}

So, using this identity, we get

 \rm \:  =  \:  {x}^{ {a}^{3}  +  {b}^{3}  + {b}^{3} + {c}^{3} +  {c}^{3} +  {a}^{3} }

 \rm \:  =  \:  {x}^{ 2({a}^{3}+{b}^{3}+{c}^{3})}

Hence,

\boxed{\tt{ {\bigg[\dfrac{ {x}^{ {a}^{2}  +  {b}^{2} } }{ {x}^{ab} } \bigg]}^{a + b}{\bigg[\dfrac{ {x}^{ {b}^{2}  +  {c}^{2} } }{ {x}^{bc} } \bigg]}^{b + c}{\bigg[\dfrac{ {x}^{ {c}^{2}  +  {a}^{2} } }{ {x}^{ca} } \bigg]}^{c + a} = {x}^{ 2({a}^{3}+{b}^{3}+{c}^{3})}}}

Similar questions