Math, asked by Itzkillerguy, 3 months ago

Prove that :-

 \sf {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}\ =\ - \dfrac{1}{2}}

Answers

Answered by INSIDI0US
62

Step-by-step explanation:

\underline{\underline{\maltese\: \: \textbf{\textsf{To\ Prove}}}}

 \sf \circ\ {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}\ =\ - \dfrac{1}{2}}

\underline{\underline{\maltese\: \: \textbf{\textsf{Solution}}}}

By taking the L.H.S

That is,

 \sf \dashrightarrow {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}}

  •  \sf {Putting\ {\pi}\ =\ 180^{\circ}}

 \sf \dashrightarrow {sin^2\ \dfrac{180^{\circ}}{6}\ +\ cos^2\ \dfrac{180^{\circ}}{3}\ -\ tan^2\ \dfrac{180^{\circ}}{6}}

 \sf \dashrightarrow {sin^2\ 30^{\circ}\ +\ cos^2\ 60^{\circ}\ -\ tan^2\ 45^{\circ}}

 \sf \dashrightarrow {(sin\ 30^{\circ})^2\ +\ (cos\ 60^{\circ})^2\ -\ (tan\ 45^{\circ})^2}

By putting,

  •  \sf {sin\ 30^{\circ}\ =\ 1/2}
  •  \sf {cos\ 60^{\circ}\ =\ 1/2}
  •  \sf {tan\ 45^{\circ}\ =\ 1}

 \sf \dashrightarrow {\bigg(\dfrac{1}{2} \bigg)^2\ +\ \bigg(\dfrac{1}{2} \bigg)^2\ -\ 1^2}

 \sf \dashrightarrow {\dfrac{1}{4}\ +\ \dfrac{1}{4}\ -\ 1}

 \sf \dashrightarrow {\dfrac{1\ +\ 1\ -\ 4}{4}}

 \sf \dashrightarrow {\dfrac{2\ -\ 4}{4}}

 \sf \dashrightarrow {\dfrac{-2}{4}}

 \sf \dashrightarrow {\dfrac{-1}{2}}

 \sf \dashrightarrow {R.H.S}

 \large {\therefore{\boxed{\boxed{\sf {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}\ =\ - \dfrac{1}{2}}}}}}

\underline{\textbf{\textsf{Hence\ Proved...!!!}}}

Answered by BrainlyVanquisher
25

\purple\bigstarGiven that :-

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  •  \sf \circ\ {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}\ =\ - \dfrac{1}{2}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\orange\bigstarSolution :-

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\red\bigstar Taking L . H . S

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

➽ we have :

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\textsf{☣ \;Putting\; Value \;of\; π \;=\; 180°}

⠀⠀⠀⠀⠀⠀⠀⠀⠀_________________________________________________________________________

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {sin^2\ \dfrac{180^{\circ}}{6}\ +\ cos^2\ \dfrac{180^{\circ}}{3}\ -\ tan^2\ \dfrac{180^{\circ}}{6}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {sin^2\ 30^{\circ}\ +\ cos^2\ 60^{\circ}\ -\ tan^2\ 45^{\circ}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies{(sin\ 30^{\circ})^2\ +\ (cos\ 60^{\circ})^2\ -\ (tan\ 45^{\circ})^2}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\textsf{☣\; Now \;putting \;values\; required\; :}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  •  \sf {sin\ 30^{\circ}\ =\ 1/2}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  •  \sf {cos\ 60^{\circ}\ =\ 1/2}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  •  \sf {tan\ 45^{\circ}\ =\ 1}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {\bigg(\dfrac{1}{2} \bigg)^2\ +\ \bigg(\dfrac{1}{2} \bigg)^2\ -\ 1^2}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies{\dfrac{1}{4}\ +\ \dfrac{1}{4}\ -\ 1}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies{\dfrac{1\ +\ 1\ -\ 4}{4}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies{\dfrac{2\ -\ 4}{4}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {\dfrac{-2}{4}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies{\dfrac{-1}{2}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

 \sf \implies {R.H.S}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

  •  \sf {sin^2\ \dfrac{\pi}{6}\ +\ cos^2\ \dfrac{\pi}{3}\ -\ tan^2\ \dfrac{\pi}{4}\ =\ - \dfrac{1}{2}}

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\;\;\;\;\;\;\;\;\;\;\;\;\;\;

\green\bigstar\textsf{Hence\ Proved  !}\pink\bigstar

Similar questions