Physics, asked by Mister360, 4 months ago

Prove that

\sf tan61=\dfrac{cos16+sin16}{cos16-sin16}

No spam​

Answers

Answered by RISH4BH
21

To Prove :-

  • \sf tan61=\dfrac{cos16+sin16}{cos16-sin16}

Proof :-

Taking RHS :-

\sf\mapsto \dfrac{cos 16^o +sin16^o}{cos16^o - sin16^o}

Dividing Numerator and Denominator by cos16°

\sf\mapsto \dfrac{\dfrac{cos 16^o +sin16^o}{cos16^o}}{\dfrac{cos16^o - sin16^o}{cos16^o}} \\\\\sf\mapsto \dfrac{\dfrac{cos16^o}{cos16^o}+\dfrac{sin16^o}{cos16^o}}{\dfrac{cos16^o}{cos16^o}-\dfrac{sin16^o}{cos16^o}}\\\\\sf\mapsto \dfrac{1+tan16^o}{1-tan16°}

We know that tan45° = 1 :-

\sf\mapsto \dfrac{tan45^o+tan16^o}{1-tan45^o . tan16^o }

So that :-

\sf\mapsto tan ( 45^o + 16^o) \qquad \bigg\lgroup \red{\bf tan(A+B)=\dfrac{tanAtanB}{1-tanA.tanB} }\bigg\rgroup \\\\\sf\mapsto \pink{ tan61^{\circ} }

= LHS

Hence Proved !

Answered by Anonymous
3

Given,

 \tan(61)  =  \frac{ \cos(16) +  \sin(16)  }{ \cos(16) -  \sin(16)  }

To Proof,

 \tan(61)  =  \frac{ \cos(16) +  \sin(16)  }{ \cos(16) -  \sin(16)  }

Proof,

 \tan(61)  =  \frac{ \cos(16) +  \sin(16)  }{ \cos(16) -  \sin(16)  }  \\  \\  \tan(61)  =  \frac{  \frac{\cos(16)  +  \sin(16) }{ \cos(16) }   }{  \frac{\cos(16) -  \sin(16) }{ \cos(16) }  }  \\  \\  \tan( 61 )  =  \frac{ \frac{ \cos(16) }{ \cos(16) }  +  \frac{ \sin(16) }{ \cos(16) }  }{ \frac{ \cos(16) }{ \cos(16) } -  \frac{ \sin(16) }{ \cos(16) }  }  \\  \\  \tan(61)  =  \frac{1 +  \tan(16) }{1 -  \tan(16) }  \\  \\

As tan(45) = 1

 \tan(61)  =  \frac{ \tan(45)  +  \tan(16) }{1 - 1 \times  \tan(16) }  \\  \\  \tan(61)  =  \frac{ \tan(45) +  \tan(16)  }{1 -  \tan(45). \tan(16)  }

As \:  \:  \tan(x + y)  =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x) . \tan(y) }

 \tan(61)  =  \frac{ \tan(45) +  \tan(16)  }{1 -  \tan(45). \tan(16)  }  \\  \\  \tan(61)  =  \tan(45 + 16)  \\  \\  \tan(61)  =  \tan(61)

Hence Proved,

Similar questions