Math, asked by anindyaadhikari13, 3 months ago

Prove that,
 \sf {x}^{0}  = 1 \:  \:  \:  \: (x \neq 0)
Don't spam.
Thank you :)​

Answers

Answered by Anonymous
54

Answer:

\rm{Prove \: that \: x⁰=1} \\ \rm \: RHS=1 \\ \:  \:  \:  \:  \:  \:  \:   = \frac{1}{1}  \\ \rm \: {Multiply \: numerator \: denominator \: by} \\ \rm \:  \:  \:  \: = \frac{x}{x}  \\  \\ \rm= \frac{x¹}{x¹}  \\ \\   \rm  = {x}^{1 - 1} \\ \rm  =  {x}^{0}  \\ \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm\: \: Law \: of \: exponent=  \frac{ {x}^{a} }{ {x}^{b} } = {x}^{a - b}  \\  \\  \\ \huge\rm{Hence \: proved!}


EliteSoul: Good
ItzArchimedes: Nice !
amitkumar44481: Good :-)
Glorious31: Nice
VishalSharma01: Good :)
BrainlyIAS: Awesome ♥
Rythm14: Good ♥
BrainlyPopularman: Nice
Answered by ItzArchimedes
36

Solution :-

We need to prove that x⁰ = 0 . Taking LHS and simplifying .

As we know that , \tt a^0 can be written as  \tt a^{1-1} . Similarly ,

\displaystyle \longrightarrow\tt x^{1-1}

Using laws of exponents \; \sf\Big[x^{m-n} = \dfrac{x^m}{x^n}\Big]

\\ \displaystyle\longrightarrow \tt \dfrac{x^1}{x^1}=\dfrac{x}{x}\\\\\displaystyle\longrightarrow \boxed{\red{\tt{1}}}

Now , comparing with RHS

LHS = RHS

Hence proved !

More information :-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}


amitkumar44481: Great :-)
Glorious31: Amazing
ItzArchimedes: Thanks :)
VishalSharma01: Awesome :)
ItzArchimedes: Thank you :)
BrainlyIAS: Good ♥
ItzArchimedes: Thanks
Similar questions