Math, asked by salonikeshari57, 1 month ago

Prove that:
sin ^{ - 1}  \frac{ \sqrt{1 + x}  +  \sqrt{1 - x} }{2}  =  \frac{\pi}{4}  +  \frac{cos ^{ - 1} x}{2}
Where
0 < x < 1

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\sf{sin^{-1}\left(\dfrac{\sqrt{1+x}+\sqrt{1-x}}{2}\right)}

\bf{\bigstar\,\,Put\,\,\,x=cos(2\,\theta)\,\,\,\,\,\,,0<cos(2\theta)<1}

So,

\sf{sin^{-1}\left(\dfrac{\sqrt{1+cos(2\,\theta)}+\sqrt{1-cos(2\,\theta)}}{2}\right)}

\sf{=sin^{-1}\left(\dfrac{\sqrt{2\,cos^2(\theta)}+\sqrt{sin^2(\theta)}}{2}\right)}

\sf{=sin^{-1}\left\{\dfrac{\sqrt{2}\left(cos(\theta)+sin(\theta)\right)}{2}\right\}}

\sf{=sin^{-1}\left\{\dfrac{cos(\theta)+sin(\theta)}{\sqrt{2}}\right\}}

\sf{=sin^{-1}\left\{\dfrac{1}{\sqrt{2}}\,cos(\theta)+\dfrac{1}{\sqrt{2}}\,sin(\theta)\right\}}

\sf{=sin^{-1}\left\{sin\left(\dfrac{\pi}{4}+\theta\right)\right\}}

\sf{=\dfrac{\pi}{4}+\theta}

\sf{=\dfrac{\pi}{4}+\dfrac{1}{2}\cdot(2\theta)}

\sf{=\dfrac{\pi}{4}+\dfrac{1}{2}\cdot\,cos^{-1}(x)}

\sf{=\dfrac{\pi}{4}+\dfrac{cos^{-1}(x)}{2}}

Similar questions