Prove that: .
Answers
Answered by
4
LHS = sin² 6x - sin² 4x
= (sin6x - sin4x)(sin6x + sin4x) [ from algebraic identity , a² - b² = (a - b)(a + b)]
now use formula,
sinC - sinD = 2cos(C + D)/2.sin(C - D)/2
sinC + sinD = 2sin(C + D)/2.cos(C - D)/2.
so, sin6x - sin4x = 2cos(6x + 4x)/2.sin(6x -4x)/2
= 2cos5x.sinx
sin6x + sin4x = 2sin(6x + 4x)/2.cos(6x - 4x)/2
=2sin5x.cosx
(sin6x - sin4x)(sin6x + sin4x) = (2cos5x.sinx)(2sin5x.cosx)
= (2sin5x.cos5x)(2sinx.cosx)
use formula,
2sinA.cosA = sin2A.
= sin10x.sin2x = RHS
= (sin6x - sin4x)(sin6x + sin4x) [ from algebraic identity , a² - b² = (a - b)(a + b)]
now use formula,
sinC - sinD = 2cos(C + D)/2.sin(C - D)/2
sinC + sinD = 2sin(C + D)/2.cos(C - D)/2.
so, sin6x - sin4x = 2cos(6x + 4x)/2.sin(6x -4x)/2
= 2cos5x.sinx
sin6x + sin4x = 2sin(6x + 4x)/2.cos(6x - 4x)/2
=2sin5x.cosx
(sin6x - sin4x)(sin6x + sin4x) = (2cos5x.sinx)(2sin5x.cosx)
= (2sin5x.cos5x)(2sinx.cosx)
use formula,
2sinA.cosA = sin2A.
= sin10x.sin2x = RHS
Similar questions