Math, asked by Anonymous, 1 year ago

Prove that ...........



 \sin(90)  = 1 \\  \\ class \:  =  \geqslant 9


piyush03: why→_→
Michael12: because
Michael12: i dont know
Michael12: ←_←
piyush03: h a r a m i....→_→
piyush03: not u bro.... michael
Michael12: ←_← @kutta

Answers

Answered by Anonymous
5
\mathfrak{\huge{\green{Answer}}}

SINCE,

SIN(2A)=2SIN(A)COS(A)

THEN,

LET US ASSUME 2A=90

->A=45

SUBSTITUTING,

SIN(2*45)=2SIN(45)COS(45)

SIN(90)=2SIN(45)COS(45)

TAKING RHS,

2SIN(45)COS(45)

->2*1/2

->1

HENCE, <font color="blue">SIN 90=1

➡️HENCE PROVED.....

\mathfrak{\huge{\orange{Thanks}}}
Answered by Anonymous
0

\huge\bf\pink{{\mid{\overline{\underline{your\: answer}}}\mid}}

WE KNOW...

\huge\bf\pink{{\mid{\overline{\underline{</u></strong><strong><u> </u></strong><strong><u>SIN(2A)=2SIN(A)COS(A)</u></strong><strong><u>}}}\mid}}

SIN(2A)=2SIN(A)COS(A)

THEN,

AFTER ASSUMING,

▶2A=90

WE GET;

A=45

SUBSTITUTING,

▶SIN(2*45)=2SIN(45)COS(45)

WE GET RESULT....

▶SIN(90)=2SIN(45)COS(45)

NOW TAKING RHS,

▶2SIN(45)COS(45)

▶2*1/2

▶1

AND LHS,

SIN90°

THEREFORE IT IS PROVED THAT ...

\huge\bf\pink{{\mid{\overline{\underline{sin 90°=1}}}\mid}}

THANKS...!!!!!

Similar questions