Prove that

+

=

Answers
Answered by
46
To prove
(sin∅ + sec∅)² + (cos∅ + cosec∅)² = (1 + sec∅cosec∅)²
Proof
Taking LHS,
Write sec∅ as 1/cos∅ and cosec∅ as 1/sin∅
→ (sin∅ + 1/cos∅)² + (cos∅ + 1/sin∅)²
→ sin²∅ + 1/cos²∅ + 2sin∅/cos∅ + cos²∅ + 1/sin²∅ + 2cos∅/sin∅
(using, (a + b)² = a² + b² + 2ab)
→ (sin²∅ + cos²∅) + (1/cos²∅ + 1/sin²∅) + 2(sin∅/cos∅ + cos∅/sin∅)
using sin²∅ + cos²∅ = 1,
→ 1 + (cos²∅ + sin²∅)/sin²∅cos²∅ + 2(sin²∅ + cos²∅)/sin∅cos∅
→ 1 + 1/sin²∅cos²∅ + 2/sin∅cos∅
→ 1 + sec²∅cosec²∅ + 2sec∅cosec∅
→ (1 + sec∅cosec∅)²
[Using, a² + b² + 2ab = (a + b)²]
Hence proved.
Answered by
3
Similar questions