Prove that
Step by step explanation
Answers
Answered by
38
Consider LHS
can be re-arranged as
We know,
So, on substituting the values, we get
We know,
So, using this identity, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
Answered by
22
LHS
= sin2x+2sin4x+sin 6x
Re-arranged
So,
sin x + sin y = 2sin [x+y/2] cos[x-y/2]
The e substituting value we get,
2sin[6x+2x/2] cos [6x-2x/2]+2sin4x
2sin[8x/2] cos [6x-2x/2]+sin 4x
2sin4x cos 2x+2sin4x
2sin4x(cos 2x+1)
Now,
cos 2x = 2cos² x - 1
Using identity,
2sin4x(2cos² x - 1 + 1)
2sin4x(2cos²x)
4cos²x sin 4x
Hence,
(sin 2x+2sin4x+sin 6x = 4cos² x sin 4x)
Similar questions