Math, asked by madhav5245, 12 hours ago

Prove that

sin2x + 2sin4x + sin6x =  {4cos}^{2}x \: sin4x
Step by step explanation​

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: sin2x + 2sin4x + sin6x

can be re-arranged as

\rm \:  =  \: (sin6x + sin2x) + 2sin4x

We know,

\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

So, on substituting the values, we get

\rm \:  =  \: 2sin\bigg[\dfrac{6x + 2x}{2} \bigg]cos\bigg[\dfrac{6x - 2x}{2} \bigg] + 2sin4x

\rm \:  =  \: 2sin\bigg[\dfrac{8x}{2} \bigg]cos\bigg[\dfrac{4x}{2} \bigg] + 2sin4x

\rm \:  =  \: 2sin4x \: cos2x \:  +  \: 2sin4x

\rm \:  =  \: 2sin4x(cos2x + 1)

We know,

\boxed{\tt{ cos2x =  {2cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: 2sin4x( {2cos}^{2}x - 1 + 1)

\rm \:  =  \: 2sin4x( {2cos}^{2}x)

\rm \:  =  \:  {4cos}^{2}x \: sin4x

Hence,

\rm\implies \:\boxed{\tt{ \rm \:sin2x + 2sin4x + sin6x={4cos}^{2}x sin4x}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{ cosx  +  cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{ cosx - cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{ 2sinx \: cosy \:  =  \: sin(x + y) + sin(x - y) \: }} \\

\boxed{\tt{ 2cosx \: cosy \:  =  \: cos(x + y) + cos(x - y) \: }} \\

\boxed{\tt{ 2sinx \: siny \:  =  \: cos(x  -  y) - cos(x + y) \: }} \\

\boxed{\tt{ sin2x = 2sinx \: cosx \:  =  \:  \frac{2tanx}{1 +  {tan}^{2} x} \: }} \\

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x \: }} \\

\boxed{\tt{ tan2x =  \frac{2tanx}{1 -  {tan}^{2}x } \: }} \\

Answered by TheBestWriter
22

 \large{ \underline{ \sf \: solution}}

LHS

= sin2x+2sin4x+sin 6x

Re-arranged

 =  (\sin6x </u><u>+</u><u>\sin2x)  + 2\sin 4x

So,

sin x + sin y = 2sin [x+y/2] cos[x-y/2]

The e substituting value we get,

2sin[6x+2x/2] cos [6x-2x/2]+2sin4x

2sin[8x/2] cos [6x-2x/2]+sin 4x

2sin4x cos 2x+2sin4x

2sin4x(cos 2x+1)

Now,

cos 2x = 2cos² x - 1

Using identity,

2sin4x(2cos² x - 1 + 1)

2sin4x(2cos²x)

4cos²x sin 4x

Hence,

(sin 2x+2sin4x+sin 6x = 4cos² x sin 4x)

Similar questions