Math, asked by Qatillxx69, 9 months ago

prove that

sin80cos20 \:  -  \: cos80sin20 \:  =  \:  (\sqrt{3}  \div 2)

Answers

Answered by Unni007
4

GIVEN :-

\sf sin80cos20 - cos80sin20=\dfrac{\sqrt 3}{2}

This is in the form :

  • sinAcosB - cosAsinB

WE KNOW :-

\huge\boxed{\bf sinAcosB-cosAsinB=sin(A-B)}

HERE :-

  • A = 80
  • B = 20

Applying the values to the equation ,

\sf sin80cos20 - cos80sin20=sin(80-20)

\implies\sf sin80cos20 - cos80sin20=sin60

We know ,

  • \sf sin60=\dfrac{\sqrt3}{2}

Applying the value to the equation,

\implies\sf sin80cos20 - cos80sin20=\dfrac{\sqrt 3}{2}

\huge\boxed{\bf HENCE\:PROVED\:\:!!!}

Similar questions