Math, asked by krishnatheking, 1 year ago

prove that
 \sqrt{1 +  \sin(a) }  \div  \sqrt{1 -  \sin(a) }  +  \sqrt{1 -  \sin(a) } \div  \sqrt{1 +  \sin(a) }  = 2 \sec(a)

Answers

Answered by mysticd
0
LHS= \sqrt{1 + \sin(a) } \div \sqrt{1 - \sin(a) } + \sqrt{1 - \sin(a) } \div \sqrt{1 + \sin(a) }

= \frac{\left (\sqrt{1 + \sin(a)\right )^{2}+\left( \sqrt{1 - \sin(a)\right)^{2}}{\sqrt{1 + \sin(a)\times\sqrt{1-\sin(a)}}

=\frac{1+\sin(a)+1-\sin(a)}{\sqrt{1^{2}- \sin^{2}(a)}}

=\frac {2}{\sqrt {1-\sin^{2}(a)}}

=\frac {2}{\sqrt {cos^{2}(a)}}

=\frac{2}{cos(a)}

= 2\sec(a)

= RHS

••••
Similar questions