Math, asked by hhbbgghhg, 4 days ago

Prove that
 \sqrt{1 + sina) \div \sqrt{1 - sina} =secA+tanA

Answers

Answered by Anonymous
1

Questions

 \tt \to \:  \dfrac{ \sqrt{1 + sinA} }{ \sqrt{1 - sinA} }  = secA + tanA

Solution

Now Take LHS

\tt \to \:  \dfrac{ \sqrt{1 + sinA} }{ \sqrt{1 - sinA} }

We can write as

\tt \to \:   \sqrt{\dfrac{1 + sinA}{1 - sinA } }

Using Rationalization Method

\tt \to \:   \sqrt{\dfrac{1 + sinA}{1 - sinA } \times \dfrac{1 + sinA}{1 + sinA} }

Using this identities

 \tt \to \: (a + b)(a + b) = (a + b)^{2}

 \tt \to \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

we get

\tt \to \:   \sqrt{\dfrac{(1 + sinA) {}^{2} }{1 - sin^{2} A }  }

We Know that

 \tt \to \:1 - sin^{2}  \theta = cos^{2}  \theta

we get

\tt \to \:   \sqrt{\dfrac{(1 + sinA) {}^{2} }{cos {}^{2}  A }  }

 \tt \to \:  \dfrac{1 + sinA}{cosA}  =  \dfrac{1}{cosA}  +  \dfrac{sinA}{cosA}

 \tt \to \: secA + tanA

Hence Proved

Similar questions