Math, asked by Anonymous, 4 months ago

prove that -----
 \sqrt{2 +  \sqrt{2 +  \sqrt{2  \cos \: 4 \: theta}}} = 2cos \: theta \:

Answers

Answered by diajain01
17

ANSWER ⤵️

cos 2Θ = 2 cos ^2 Θ -1

cos 4 Θ = 2 cos ^2 (2 Θ) -1

1+cos 4 Θ = 2 cos ^2 2 Θ

-----------------------eq.1

cos (2 Θ)= 2 cos ^2 Θ -1

1+cos 2Θ = 2 cos ^2 Θ

------------------------eq.2

 \sqrt{2 +  \sqrt{2(1 + cos \:  \: 4 \:Θ) } }

 \sqrt{2 \sqrt{2(2cos \: 2 \ Θ ) } }

 \sqrt{2  \sqrt{(1 +  \cos \: 2 \: Θ)} }

 \sqrt{2(2 {cos}^{2} \: Θ)}

{ \sqrt{4 {cos}^{2} Θ}}

:\longrightarrow\pink{2cos \: theta}

:\longrightarrow\blue{RHS}

\purple{BE \:  \:  BRÃÎÑLY❥}

✝HOPE \:  IT \:  HELPS✝

Similar questions