Prove that:
Answers
Answered by
1
Answer:
Step-by-step explanation:
Hi,
Expanding (√3 + √2)⁶ using binomial expansion, we get
(√3 + √2)⁶ = ⁶C₀(√3)⁶ + ⁶C₁(√3)⁵(√2) + ⁶C₂(√3)⁴(√2)² + ⁶C₃(√3)³(√2)³
+ ⁶C₄(√3)²(√2)⁴ + ⁶C₅(√3)(√2)⁵ + ⁶C₆(√2)⁶---------------(1)
(√3 - √2)⁶ = ⁶C₀(√3)⁶ + ⁶C₁(√3)⁵(-√2) + ⁶C₂(√3)⁴(-√2)² + ⁶C₃(√3)³(-√2)³
+ ⁶C₄(√3)²(-√2)⁴ + ⁶C₅(√3)(-√2)⁵ + ⁶C₆(-√2)⁶
(√3 - √2)⁶ = ⁶C₀(√3)⁶ - ⁶C₁(√3)⁵(√2) + ⁶C₂(√3)⁴(√2)² - ⁶C₃(√3)³(√2)³
+ ⁶C₄(√3)²(√2)⁴ - ⁶C₅(√3)(√2)⁵ + ⁶C₆(√2)⁶---------------(2)
Adding (1) and (2), we get
(√3 + √2)⁶ + (√3 - √2)⁶
= 2*[⁶C₀(√3)⁶ + ⁶C₂(√3)⁴(√2)² + ⁶C₄(√3)²(√2)⁴ + ⁶C₆(√2)⁶]
=2*[27 + 15*9*2 + 15*3*4 + 8]
=2*[27 + 270 + 180 + 8]
=2*485
= 970
Hope, it helps !
Answered by
2
Solution :
![(\sqrt{3}+\sqrt{2})^{6}+(\sqrt{3}-\sqrt{2})^{6}=970 (\sqrt{3}+\sqrt{2})^{6}+(\sqrt{3}-\sqrt{2})^{6}=970](https://tex.z-dn.net/?f=%28%5Csqrt%7B3%7D%2B%5Csqrt%7B2%7D%29%5E%7B6%7D%2B%28%5Csqrt%7B3%7D-%5Csqrt%7B2%7D%29%5E%7B6%7D%3D970)
**********************************
![\rm\(x+a)^{n}=^nC_{0}x^{n}+^nC_{1}x^{n-1}a+^nC_{2}x^{n-2}a^{2}+....+^{n}C_{r}x^{n-r}a^{r}+...+^nC_{n}a^{n} \rm\(x+a)^{n}=^nC_{0}x^{n}+^nC_{1}x^{n-1}a+^nC_{2}x^{n-2}a^{2}+....+^{n}C_{r}x^{n-r}a^{r}+...+^nC_{n}a^{n}](https://tex.z-dn.net/?f=%5Crm%5C%28x%2Ba%29%5E%7Bn%7D%3D%5EnC_%7B0%7Dx%5E%7Bn%7D%2B%5EnC_%7B1%7Dx%5E%7Bn-1%7Da%2B%5EnC_%7B2%7Dx%5E%7Bn-2%7Da%5E%7B2%7D%2B....%2B%5E%7Bn%7DC_%7Br%7Dx%5E%7Bn-r%7Da%5E%7Br%7D%2B...%2B%5EnC_%7Bn%7Da%5E%7Bn%7D)
**********************************
=>
= 2$[ ^{6}C_{0}(\sqrt{3})^{6}+^{6}C_{2}(\sqrt{3})^{4}(\sqrt{2})^{2}+^{6}C_{4}(\sqrt{3})^{2}(\sqrt{2})^{4}+^{6}C_{6}(\sqrt{2})^{6}$
= 2[1×3³+15×3²×2+15×3×4+1×2³]
= 2[ 27 + 270 + 180 + 18 ]
= 2 × 485
= 970
= RHS
••••
**********************************
**********************************
=>
= 2$[ ^{6}C_{0}(\sqrt{3})^{6}+^{6}C_{2}(\sqrt{3})^{4}(\sqrt{2})^{2}+^{6}C_{4}(\sqrt{3})^{2}(\sqrt{2})^{4}+^{6}C_{6}(\sqrt{2})^{6}$
= 2[1×3³+15×3²×2+15×3×4+1×2³]
= 2[ 27 + 270 + 180 + 18 ]
= 2 × 485
= 970
= RHS
••••
Similar questions
Computer Science,
8 months ago
Environmental Sciences,
8 months ago
Physics,
1 year ago
Math,
1 year ago