Prove that:
Answers
Answered by
1
Answer:
Step-by-step explanation:
Hi,
Expanding (√3 + √2)⁶ using binomial expansion, we get
(√3 + √2)⁶ = ⁶C₀(√3)⁶ + ⁶C₁(√3)⁵(√2) + ⁶C₂(√3)⁴(√2)² + ⁶C₃(√3)³(√2)³
+ ⁶C₄(√3)²(√2)⁴ + ⁶C₅(√3)(√2)⁵ + ⁶C₆(√2)⁶---------------(1)
(√3 - √2)⁶ = ⁶C₀(√3)⁶ + ⁶C₁(√3)⁵(-√2) + ⁶C₂(√3)⁴(-√2)² + ⁶C₃(√3)³(-√2)³
+ ⁶C₄(√3)²(-√2)⁴ + ⁶C₅(√3)(-√2)⁵ + ⁶C₆(-√2)⁶
(√3 - √2)⁶ = ⁶C₀(√3)⁶ - ⁶C₁(√3)⁵(√2) + ⁶C₂(√3)⁴(√2)² - ⁶C₃(√3)³(√2)³
+ ⁶C₄(√3)²(√2)⁴ - ⁶C₅(√3)(√2)⁵ + ⁶C₆(√2)⁶---------------(2)
Adding (1) and (2), we get
(√3 + √2)⁶ + (√3 - √2)⁶
= 2*[⁶C₀(√3)⁶ + ⁶C₂(√3)⁴(√2)² + ⁶C₄(√3)²(√2)⁴ + ⁶C₆(√2)⁶]
=2*[27 + 15*9*2 + 15*3*4 + 8]
=2*[27 + 270 + 180 + 8]
=2*485
= 970
Hope, it helps !
Answered by
2
Solution :
**********************************
**********************************
=>
= 2$[ ^{6}C_{0}(\sqrt{3})^{6}+^{6}C_{2}(\sqrt{3})^{4}(\sqrt{2})^{2}+^{6}C_{4}(\sqrt{3})^{2}(\sqrt{2})^{4}+^{6}C_{6}(\sqrt{2})^{6}$
= 2[1×3³+15×3²×2+15×3×4+1×2³]
= 2[ 27 + 270 + 180 + 18 ]
= 2 × 485
= 970
= RHS
••••
**********************************
**********************************
=>
= 2$[ ^{6}C_{0}(\sqrt{3})^{6}+^{6}C_{2}(\sqrt{3})^{4}(\sqrt{2})^{2}+^{6}C_{4}(\sqrt{3})^{2}(\sqrt{2})^{4}+^{6}C_{6}(\sqrt{2})^{6}$
= 2[1×3³+15×3²×2+15×3×4+1×2³]
= 2[ 27 + 270 + 180 + 18 ]
= 2 × 485
= 970
= RHS
••••
Similar questions