Math, asked by volladamramesh, 3 months ago

Prove that
 \sqrt{3 +  \sqrt{5} }
Irrational​

Answers

Answered by IINiRII
0

Step-by-step explanation:

\huge{\underline{\boxed{\sf{\green{answer}}}}}

let \:   \sqrt{3}  +  \sqrt{5}  \: be \: a

➡️where a is rational.

therefore,

➡️ \sqrt{3}  +  \sqrt{5}  = a

➡️  { \sqrt{3} }^{2}   =  {(a -  \sqrt{5)} }^{2}

3 =  {a}^{2}  + 5 - 2a \sqrt{5}  \\ 2a \sqrt{5}  =  {a}^{2}  + 5 - 3 \\ 2a \sqrt{5}  =  {a}^{2}  + 2 \\  \sqrt{5}  =  \frac{ {a}^{2} + 2 }{2a}

➡️which is contradiction

as √5 is irrational and

 \frac{ {a + 2}^{2} }{2a} is \: rational

hence proved. that √3 + √5 is irrational

\huge{\underline{\boxed{\sf{\purple{Hope-it-helps}}}}}

Similar questions