Math, asked by JK1100, 3 months ago

prove that

( \sqrt{3 \times 5 { }^{ - 3} }  \div  \sqrt[3]{3 {}^{ - 1} }  \sqrt{5} ) \times  \sqrt[6]{3 \times  {5}^{6} }  =  \frac{3}{5}

Answers

Answered by Anonymous
29

Answer:

Question:

Prove that:

{ \sf{( \sqrt{3 \times  {5}^{ - 3}  } \div  \sqrt[3]{ {3}^{ - 1} }   \sqrt{5}) \times  \sqrt[6]{3 \times  {5}^{6} }  =  \frac{3}{5}  }}

Solution:

{ \implies{ \sf{( \sqrt{3 \times  {5}^{ - 3}  } \div  \sqrt[3]{ {3}^{ - 1} }   \sqrt{5}) \times  \sqrt[6]{3 \times  {5}^{6} }}}}

{ \implies{ \sf{ \bigg( { \big(3 \times  {5}^{ - 3})  }^{ \frac{1}{2} }  \div  { \big( {3}^{ - 1}) }^{ \frac{1}{3} } ({5})^{ \frac{1}{2} }  \bigg) \times (5 \times  {3}^{ \frac{1}{6} }  }}}

{ \implies{ \sf{ \bigg( {(3)}^{ \frac{1}{2} }  \times  {(5)}^{ \frac{ - 3}{2} } \div  {(3)}^{ \frac{ - 1}{3} }   \times  {5}^{ \frac{1}{2} }  \bigg) \times 5 \times   {3}^{ \frac{1}{6} }  }}}

{ \implies{ \sf{ \bigg( ({3})^{ \frac{3 + 2}{6} } \times  {(5)}^{ { \frac{ - 4}{2} }  }  \bigg) \times  {3}^{ \frac{1}{6} } \times 5   }}}

{ \implies{ \sf{ \bigg( {(3)}^{ \frac{5}{6} }  \times  {5}^{ - 2}  \bigg) \times  {3}^{ \frac{1}{6} }  \times 5}}}

{ \implies{ \sf{( {3)}^{ \frac{5}{6} +  \frac{1}{6}   } \times  {5}^{ - 1}  }}}

{ \implies{ \sf{ {3}^{ \frac{6}{6} } \times  \frac{1}{5}  }}}

{ \implies{ \sf{3 \times  \frac{1}{5} }}}

{ \implies{ \sf{ \frac{3}{5} }}}

{ \large{ \mathbb{ \blue{HENCE \:   \: PROVED ...! }}}}

Answered by StormEyes
9

Solution!!

(\sqrt{3\times 5^{-3}}\div \sqrt[3]{3^{-1}}\sqrt{5})\times \sqrt[6]{3\times 5^{6}}=\dfrac{3}{5}

Take LHS.

=(\sqrt{3\times 5^{-3}}\div \sqrt[3]{3^{-1}}\sqrt{5})\times \sqrt[6]{3\times 5^{6}}

Use \sqrt[n]{a}=\sqrt[mn]{a^{m}} to expand the expression.

=\sqrt[6]{(3\times 5^{-3})^{3}}\div \sqrt[6]{3^{-2}}\times \sqrt[6]{5^{3}})\sqrt[6]{3\times 5^{6}}

Simplify the radical expression.

=\sqrt[6]{(3\times 5^{-3})^{3}}\div \sqrt[6]{3^{-2}}\times \sqrt[6]{5^{3}})5\sqrt[6]{3}

The product of roots with same index is equal to the root of the product.

=\sqrt[6]{(3\times 5^{-3})^{3}\div 3^{-2}\times 5^{3}}\times 5\sqrt[6]{3}

In order to raise a product to a power, raise each factor to that power.

=\sqrt[6]{27\times 5^{-9}\div 3^{-2}\times 5^{3}}\times 5\sqrt[6]{3}

Dividing by a^{-n} is the same as multiplying by a^{n}.

=\sqrt[6]{27\times 5^{-9}\times 3^{2}\times 5^{3}}\times 5\sqrt[6]{3}

Write the number in exponential form.

=\sqrt[6]{3^{3}\times 5^{-9}\times 3^{2}\times 5^{3}}\times 5\sqrt[6]{3}

Calculate the product using a^{m}\times a^{n}=a^{m+n}.

=\sqrt[6]{3^{5}\times 5^{-6}}\times 5\sqrt[6]{3}

Simplify the radical expression.

=5^{-1}\times \sqrt[6]{3^{5}}\times 5\sqrt[6]{3}

The product of roots with same index is equal to the root of the product.

=5^{-1}\times \sqrt[6]{3^{5}\times 3}\times 5

Calculate the product using a^{m}\times a^{n}=a^{m+n}.

=5^{-1}\times \sqrt[6]{3^{6}}\times 5

Reduce the exponent and index of the radical with 6.

=5^{-1}\times 3\times 5

Calculate the product using a^{m}\times a^{n}=a^{m+n}.

=5^{0}\times 3

Any non-zero expression with the exponent 0 equals 1.

=1\times 3

Any expression multiplied by 1 remains the same.

=3

3 ≠ 3/5

LHS ≠ RHS

Similar questions