Math, asked by vivekkumar2027, 9 months ago

Prove that
 \sqrt{5}
Is irrational ​

Answers

Answered by simplegirl16
6
\huge{Hello\ Dude}

Here is ur answer ♥




Let us assume that √5 is a rational number.
we know that the rational numbers are in the form of p/q form where p,q are intezers.
so, √5 = p/q
     p = √5q
we know that 'p' is a rational number. so √5 q must be rational since it equals to p
but it doesnt occurs with √5 since its not an intezer
therefore, p =/= √5q
this contradicts the fact that √5 is an irrational number
hence our assumption is wrong and √5 is an irrational number.






.

.

.





\huge{Thankyou}

☺☺☺☺☺☺☺☺☺☺☺☺




Similar questions