Math, asked by judeelsonserrao, 9 months ago

Prove that
 \sqrt{ \frac{tano - coto \: }{sino coso}  =  {tano}^{2}  -  {coto }^{2}

Answers

Answered by ushaajay2016
0

Answer:

I didn't understand anything

Answered by rajeevr06
3

LHS.

 \frac{ \tan( \alpha ) -  \cot( \alpha )  }{ \sin( \alpha )  \cos( \alpha ) }  =   \frac{ \frac{ \sin( \alpha ) }{ \cos( \alpha )  } -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  }{ \sin( \alpha ) \cos( \alpha )  }  =

 \frac{ \sin {}^{2} ( \alpha ) -  \cos {}^{2} ( \alpha )  }{ \sin {}^{2} ( \alpha )  \cos {}^{2} ( \alpha ) }  =  \frac{1}{ \cos {}^{2} ( \alpha ) }  -  \frac{1}{ \sin {}^{2} ( \alpha ) }

 =  \sec {}^{2} ( \alpha )  -  \csc {}^{2} ( \alpha )  = 1 +  \tan {}^{2} ( \alpha )  - 1 -  \cot {}^{2} ( \alpha )  =

 \tan {}^{2} ( \alpha )  -  \cot {}^{2} ( \alpha )

RHS.

PROVED.

.

Mark BRAINLIEST if this is helpful to you. Thanks

Similar questions