Math, asked by puja77, 1 year ago

prove that
 \sqrt{p \:   }
 +  \sqrt{q}
is irrational

no spammed answers required

Answers

Answered by Smartyyogi45
4
(HOPE IT WILL HELP YOU )

First, we'll assume that √p + √q is rational, where p and q are distinct primes 
√p + √q = x, where x is rational 

Rational numbers are closed under multiplication, so if we square both sides, we still get rational numbers on both sides. 

(√p + √q)² = x² 
p + 2√(pq) + q = x² 
2√(pq) = x² - p - q 

√(pq) = (x² - p - q) / 2 

Now x, x², p, q and 2 are all rational, and rational numbers are closed under subtraction and division. So (x² - p - q) / 2 is rational. 

But since p and q are both primes, then pq is not a perfect square and therefore √(pq) is not rational. But this is a contradiction. Original assumption must be wrong. 

So √p + √q is irrational, where p and q are distinct primes .

puja77: thanks bhai it helps me a lot
Smartyyogi45: mention not
puja77: ^_^
Answered by Anonymous
4
Heya sissy☺☺

Hope this will help☺☺
Attachments:

puja77: thanks bhai
Anonymous: welcome
puja77: ;)
Similar questions