Math, asked by ShubodhKnautiyal, 4 months ago

prove that
 \sqrt{sec ^{2} +  cosec {}^{2} }  =  tan \:  + cot

Answers

Answered by ashirvadpandey123
1

Answer:

Proved.

Step-by-step explanation:

Convert LHS in sin and cos.

If this whole process is difficult for you you can change both sides in sin cosine and equate an intermediate resultt.

Attachments:
Answered by Clαrissα
9

Prove that :-

  •  \sf  \sqrt{sec^2 \: + cosec^2} = tan+cot

To Prove :

  • L.H.S = R.H.S

  • i.e.  \sf  \sqrt{sec^2 \theta \:  + cosec^2 \theta}  = tan \theta \:  + cos \theta

Solution :

L.H.S =  \sf  \sqrt{sec^2 \theta \:  + cosec^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf \longrightarrow \:  \sqrt{(1 + tan^2 \theta) + (1 + cot^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf \longrightarrow \:  \sqrt{2 + tan^2 \theta + cot^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf \longrightarrow  \:  \sqrt{tan^2 \theta + cot^2 \theta + 2 \:  tan \theta \:  cot \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf \longrightarrow  \: (tan\theta + cot \theta)^2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf \longrightarrow  \: (tan\theta + cot \theta) = R.H.S

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

L.H.S = R.H.S

Hence, Proved!

Similar questions