Math, asked by nayan505, 9 months ago

Prove That
\sum _ { a , b , c } ( \frac { 1 } { 1 + \log _ { a } b c } ) = 1 \:

Answers

Answered by ITzBrainlyGuy
3

Answer:

We know that

   \log_{a}(b)  =  \frac{  \log(b) }{ \log(a) }

We have,

 \sum_{a,b,c} ( \frac{1}{1 +   \log_{a}(bc) } ) = 1

Taking LHS

 \frac{1}{1 +  \log_{a}(bc) }

 \frac{1}{1 +  \frac{ \log(bc) }{ \log(a) } }  =  \frac{1}{   \frac{ \log(a) +   \log(bc)  }{  \log(a) }  }  =  \frac{ \log(a) }{ \log(a)  +   \log(bc) }

Using

log( a ) + log( b ) = log (ab)

 =  \frac{ \log(a) }{  \log(abc) }

Thus, the sum is

  = \frac{ \log(a) }{ \log(abc) }  +  \frac{  \log(b) }{  \log(abc) }  +  \frac{  \log(c) }{  \log(abc) }

  = \frac{  \log(a)  +   \log(b) +   \log(c)  }{  \log(abc) }

Using the same formula

 =  \frac{  \log(abc) }{  \log(abc) }

= 1

Similar questions